Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen angezeigt.

Link zu dieser Vergleichsansicht

Beide Seiten der vorigen RevisionVorhergehende Überarbeitung
Nächste Überarbeitung
Vorhergehende Überarbeitung
spielplatz:mathematische-formeln-anleitung [2019/04/14 08:55] – alte Version wiederhergestellt (2019/04/14 10:52) wispielplatz:mathematische-formeln-anleitung [2023/04/18 09:12] (aktuell) – [Mathematische Formeln in Dokuwiki] wi
Zeile 3: Zeile 3:
 Zusammengestellt von M. Wilfling, HTBLA Kaindorf Zusammengestellt von M. Wilfling, HTBLA Kaindorf
  
-$xxx$+\frac{1}{x} $
 Wer möchte seine Wiki Seiten, die mathematische Formeln enthalten, professionell gestalten? Wer möchte seine Wiki Seiten, die mathematische Formeln enthalten, professionell gestalten?
  
Zeile 90: Zeile 90:
  
 ==== Sonderzeichen und Griechische Buchstaben ==== ==== Sonderzeichen und Griechische Buchstaben ====
-<code>$ \mathrm{A}\mathrm{B}\Gamma\Delta\mathrm{E}\mathrm{Z}\mathrm{H}\Theta\mathrm{I}\mathrm{K}\Lambda +  $ \mathrm{A}\mathrm{B}\Gamma\Delta\mathrm{E}\mathrm{Z}\mathrm{H}\Theta\mathrm{I}\mathrm{K}\Lambda 
-\mathrm{M}\mathrm{N}\Xi\mathrm{O}\Pi\mathrm{P}\Sigma\mathrm{T}\Phi\mathrm{X}\mathrm{Y}\Psi\Omega$</code>+  \mathrm{M}\mathrm{N}\Xi\mathrm{O}\Pi\mathrm{P}\Sigma\mathrm{T}\Phi\mathrm{X}\mathrm{Y}\Psi\Omega$
  
-$ \mathrm{A}\mathrm{B}\Gamma\Delta\mathrm{E}\mathrm{Z}\mathrm{H}\Theta\mathrm{I}\mathrm{K}\Lambda\mathrm{M}\mathrm{N}\Xi\mathrm{O}\Pi\mathrm{P}\Sigma\mathrm{T}\Phi\mathrm{X}\mathrm{Y}\Psi\Omega$ +$ \mathrm{A}\mathrm{B}\Gamma\Delta\mathrm{E}\mathrm{Z}\mathrm{H}\Theta\mathrm{I}\mathrm{K}\Lambda \mathrm{M}\mathrm{N}\Xi\mathrm{O}\Pi\mathrm{P}\Sigma\mathrm{T}\Phi\mathrm{X}\mathrm{Y}\Psi\Omega$ 
-<code>$\alpha\beta\gamma\delta\epsilon\zeta\eta\theta\iota\kappa\lambda\mu\nu\xi\mathrm{o}\pi\rho\sigma\tau\phi\chi\upsilon\psi\omega$</code>+ 
 +  $ \alpha\beta\gamma\delta\epsilon\zeta\eta\theta\iota\kappa\lambda\mu\nu\xi\mathrm{o}\pi\rho\sigma\tau\phi\chi\upsilon\psi\omega$
 $ \alpha\beta\gamma\delta\epsilon\zeta\eta\theta\iota\kappa\lambda\mu\nu\xi\mathrm{o}\pi\rho\sigma\tau\phi\chi\upsilon\psi\omega$ $ \alpha\beta\gamma\delta\epsilon\zeta\eta\theta\iota\kappa\lambda\mu\nu\xi\mathrm{o}\pi\rho\sigma\tau\phi\chi\upsilon\psi\omega$
-<code>$\varepsilon \quad \vartheta \quad \varpi \quad \varrho \quad \varsigma \quad \varphi$</code>+  $\varepsilon \quad \vartheta \quad \varpi \quad \varrho \quad \varsigma \quad \varphi$
 $ \varepsilon \quad \vartheta \quad \varpi \quad \varrho \quad \varsigma \quad \varphi$ $ \varepsilon \quad \vartheta \quad \varpi \quad \varrho \quad \varsigma \quad \varphi$
-<code>$\aleph\quad\Re\quad\Im\quad\partial\quad\infty\quad\forall\quad\exists\quad\neg\quad\in\quad\heartsuit$</code>+  $\aleph\quad\Re\quad\Im\quad\partial\quad\infty\quad\forall\quad\exists\quad\neg\quad\in\quad\heartsuit$
 $ \aleph\quad\Re\quad\Im\quad\partial\quad\infty\quad\forall\quad\exists\quad\neg\quad\in\quad\heartsuit$ $ \aleph\quad\Re\quad\Im\quad\partial\quad\infty\quad\forall\quad\exists\quad\neg\quad\in\quad\heartsuit$
-<code>$ \forall \varepsilon>0:|f(x_1)-f(x_2)| < \varepsilon\quad\exists\eta: |x_1-x_2|<\eta$</code>+  $ \forall \varepsilon>0:|f(x_1)-f(x_2)| < \varepsilon\quad\exists\eta: |x_1-x_2|<\eta$
 $ \forall \varepsilon>0:|f(x_1)-f(x_2)| < \varepsilon\quad\exists\eta: |x_1-x_2|<\eta$ $ \forall \varepsilon>0:|f(x_1)-f(x_2)| < \varepsilon\quad\exists\eta: |x_1-x_2|<\eta$
 +
 +  Eurozeichen mit Unicode: $ \unicode{0x20AC}$
 +Eurozeichen mit Unicode: $ \unicode{0x20AC}$
 ==== Klammern ==== ==== Klammern ====
-<code>$ ( ~ \lbrack ~ \lbrace ~ [ ~ \lfloor ~ \langle ~ \{ ~ \lceil$</code>+  $ ( ~ \lbrack ~ \lbrace ~ [ ~ \lfloor ~ \langle ~ \{ ~ \lceil$
 $ ( ~ \lbrack ~ \lbrace ~ [ ~ \lfloor ~ \langle ~ \{ ~ \lceil$ $ ( ~ \lbrack ~ \lbrace ~ [ ~ \lfloor ~ \langle ~ \{ ~ \lceil$
-<code>$) ~ \rbrack ~ \rbrace ~ ]~ \rfloor ~ \rangle ~ \} ~  \rceil$</code> +  $ ) ~ \rbrack ~ \rbrace ~ ]~ \rfloor ~ \rangle ~ \} ~  \rceil$ 
-$) ~ \rbrack ~ \rbrace ~ ]~ \rfloor ~ \rangle ~ \} ~  \rceil$ +$ ) ~ \rbrack ~ \rbrace ~ ]~ \rfloor ~ \rangle ~ \} ~  \rceil$ 
-<code>$ \Bigl( (x+1) (x-1)\Bigr) ^2$</code>+  $ \Bigl( (x+1) (x-1)\Bigr) ^2$
 $ \Bigl( (x+1) (x-1)\Bigr) ^2$ $ \Bigl( (x+1) (x-1)\Bigr) ^2$
-<code>$ \left( (x+1) (x-1)\right) ^2$</code>+  $ \left( (x+1) (x-1)\right) ^2$
 $ \left( (x+1) (x-1)\right) ^2$ $ \left( (x+1) (x-1)\right) ^2$
-<code>$ 1 + \left(\frac{1}{1-x^2}\right)$</code>+  $ 1 + \left(\frac{1}{1-x^2}\right)$
 $ 1 + \left(\frac{1}{1-x^2}\right)$ $ 1 + \left(\frac{1}{1-x^2}\right)$
-<code>$ \underbrace{\overbrace{a + b + \cdots +z}^{26} + \overbrace{A + B + \cdots+Z}^{26}}_{52}$</code>+  $ \underbrace{\overbrace{a + b + \cdots +z}^{26} + \overbrace{A + B + \cdots+Z}^{26}}_{52}$
 $ \underbrace{\overbrace{a + b + \cdots +z}^{26} + \overbrace{A + B + \cdots+Z}^{26}}_{52}$ $ \underbrace{\overbrace{a + b + \cdots +z}^{26} + \overbrace{A + B + \cdots+Z}^{26}}_{52}$
-<code>$ \overline{m+n} \qquad \underline{m+n}$</code>+  $ \overline{m+n} \qquad \underline{m+n}$
 $ \overline{m+n} \qquad \underline{m+n}$ $ \overline{m+n} \qquad \underline{m+n}$
 ==== Operatoren ==== ==== Operatoren ====
-<code>$x = y > z \qquad x := y \qquad x \le y \ne z $</code>+  $x = y > z \qquad x := y \qquad x \le y \ne z $
 $x = y > z \qquad x := y \qquad x \le y \ne z$  $x = y > z \qquad x := y \qquad x \le y \ne z$ 
-<code>$x \sim y \simeq z \qquad x \equiv y \not\equiv z \qquad x \subset y \subseteq z$</code>+  $x \sim y \simeq z \qquad x \equiv y \not\equiv z \qquad x \subset y \subseteq z$
 $x \sim y \simeq z \qquad x \equiv y \not\equiv z \qquad x \subset y \subseteq z$ $x \sim y \simeq z \qquad x \equiv y \not\equiv z \qquad x \subset y \subseteq z$
-<code>$x + y - z \qquad x * y / z \qquad x \times y \cdot z$</code>+  $x + y - z \qquad x * y / z \qquad x \times y \cdot z$
 $x + y - z \qquad x * y / z \qquad x \times y \cdot z$ $x + y - z \qquad x * y / z \qquad x \times y \cdot z$
-<code>$x \circ y \bullet z \qquad x \cup y \cap z \qquad x \sqcup y \sqcap z$</code>+  $x \circ y \bullet z \qquad x \cup y \cap z \qquad x \sqcup y \sqcap z$
 $x \circ y \bullet z \qquad x \cup y \cap z \qquad x \sqcup y \sqcap z$ $x \circ y \bullet z \qquad x \cup y \cap z \qquad x \sqcup y \sqcap z$
-<code>$x \vee y \wedge z\qquad x \pm y \mp z$</code>+  $x \vee y \wedge z\qquad x \pm y \mp z$
 $x \vee y \wedge z\qquad x \pm y \mp z$ $x \vee y \wedge z\qquad x \pm y \mp z$
  
 ==== Akzente ==== ==== Akzente ====
-<code>$ \hat a\qquad\check b\qquad\tilde c \qquad \acute d \qquad \grave$</code> +  $ \hat a \qquad \check b \qquad \tilde c \qquad \acute d \qquad \grave e
-$ \hat a\qquad\check b\qquad\tilde c \qquad \acute d \qquad \grave$ +$ \hat a \qquad \check b \qquad \tilde c \qquad \acute d \qquad \grave e
-<code>$ \dot f\qquad\ddot g\qquad\breve h \qquad \bar k \qquad \vec l$</code>+  $ \dot f\qquad\ddot g\qquad\breve h \qquad \bar k \qquad \vec l$
 $ \dot f\qquad\ddot g\qquad\breve h \qquad \bar k \qquad \vec l$ $ \dot f\qquad\ddot g\qquad\breve h \qquad \bar k \qquad \vec l$
-<code>$ \hat\imath \qquad \check\jmath$</code>+  $ \hat\imath \qquad \check\jmath$
 $ \hat\imath \qquad \check\jmath$ $ \hat\imath \qquad \check\jmath$
-<code>$ \widehat x \qquad \widehat{xy} \qquad \widehat{xyz}$</code>+  $ \widehat x \qquad \widehat{xy} \qquad \widehat{xyz}$
 $ \widehat x \qquad \widehat{xy} \qquad \widehat{xyz}$ $ \widehat x \qquad \widehat{xy} \qquad \widehat{xyz}$
-<code>$ \widetilde x \qquad \widetilde{xy} \qquad \widetilde{xyz}$</code>+  $ \widetilde x \qquad \widetilde{xy} \qquad \widetilde{xyz}$
 $ \widetilde x \qquad \widetilde{xy} \qquad \widetilde{xyz}$ $ \widetilde x \qquad \widetilde{xy} \qquad \widetilde{xyz}$
 ==== Vektoren ==== ==== Vektoren ====
-<code>$ \alpha \cdot(\vec x + \vec y) = \alpha \cdot \vec x + \alpha \cdot \vec y$</code>+  $ \alpha \cdot(\vec x + \vec y) = \alpha \cdot \vec x + \alpha \cdot \vec y$
 $ \alpha \cdot(\vec x + \vec y) = \alpha \cdot \vec x + \alpha \cdot \vec y$ $ \alpha \cdot(\vec x + \vec y) = \alpha \cdot \vec x + \alpha \cdot \vec y$
-<code>$ \vec x \cdot (\vec y \cdot \vec z) \not=(\vec x\cdot\vec y)\cdot \vec z$</code>+  $ \vec x \cdot (\vec y \cdot \vec z) \not=(\vec x\cdot\vec y)\cdot \vec z$
 $ \vec x \cdot (\vec y \cdot \vec z) \not=(\vec x\cdot\vec y)\cdot \vec z$ $ \vec x \cdot (\vec y \cdot \vec z) \not=(\vec x\cdot\vec y)\cdot \vec z$
-<code>$ \vec x\times (\vec y\times \vec z) \not= (\vec x \times \vec y) \times \vec z$</code>+  $ \vec x\times (\vec y\times \vec z) \not= (\vec x \times \vec y) \times \vec z$
 $ \vec x\times (\vec y\times \vec z) \not= (\vec x \times \vec y) \times \vec z$ $ \vec x\times (\vec y\times \vec z) \not= (\vec x \times \vec y) \times \vec z$
 ==== Pfeile ==== ==== Pfeile ====
-<code>$\leftarrow \qquad \Leftarrow \qquad \leftrightarrow \qquad +  $ \leftarrow \qquad \Leftarrow \qquad \leftrightarrow \qquad 
-\Leftrightarrow \qquad \uparrow\qquad\downarrow\qquad\nearrow$</code> +  \Leftrightarrow \qquad \uparrow\qquad\downarrow\qquad\nearrow$ 
-$\leftarrow \qquad \Leftarrow \qquad \leftrightarrow \qquad \Leftrightarrow \qquad \uparrow\qquad\downarrow\qquad\nearrow$ +$ \leftarrow \qquad \Leftarrow \qquad \leftrightarrow \qquad \Leftrightarrow \qquad \uparrow\qquad\downarrow\qquad\nearrow$ 
-<code>$\longleftarrow\qquad\leftharpoonup \qquad \mapsto \qquad \leadsto$</code> +  $\longleftarrow\qquad\leftharpoonup \qquad \mapsto \qquad \leadsto$ 
-$\longleftarrow\qquad\leftharpoonup \qquad \mapsto \qquad \leadsto$ +$ \longleftarrow\qquad\leftharpoonup \qquad \mapsto \qquad \leadsto$ 
-<code>$(\mathcal{A} \Rightarrow \mathcal{B}) \Longleftrightarrow +  $ (\mathcal{A} \Rightarrow \mathcal{B}) \Longleftrightarrow 
-(\lnot \mathcal{B} \Rightarrow \lnot \mathcal{A})$</code> +  (\lnot \mathcal{B} \Rightarrow \lnot \mathcal{A})$ 
-$(\mathcal{A} \Rightarrow \mathcal{B}) \Longleftrightarrow (\lnot \mathcal{B} \Rightarrow \lnot \mathcal{A})$ +$ (\mathcal{A} \Rightarrow \mathcal{B}) \Longleftrightarrow (\lnot \mathcal{B} \Rightarrow \lnot \mathcal{A})$ 
-<code>$(\mathcal{A} \Longleftrightarrow \mathcal{B}) \Longleftrightarrow +  $(\mathcal{A} \Longleftrightarrow \mathcal{B}) \Longleftrightarrow 
-(\mathcal{A}\Rightarrow \mathcal{B}) \wedge (\mathcal{B}\Rightarrow\mathcal{A})$ +  (\mathcal{A}\Rightarrow \mathcal{B}) \wedge (\mathcal{B}\Rightarrow\mathcal{A})$ 
-</code> + 
-$(\mathcal{A} \Longleftrightarrow \mathcal{B}) \Longleftrightarrow+$ (\mathcal{A} \Longleftrightarrow \mathcal{B}) \Longleftrightarrow
 (\mathcal{A}\Rightarrow \mathcal{B}) \wedge (\mathcal{B}\Rightarrow\mathcal{A})$ (\mathcal{A}\Rightarrow \mathcal{B}) \wedge (\mathcal{B}\Rightarrow\mathcal{A})$
  
 ==== Schriftartwechsel ==== ==== Schriftartwechsel ====
-<code>$ \forall x\in\mathbf{R}: x^2\ge0$</code>+  $ \forall x\in\mathbf{R}: x^2\ge0$
 $ \forall x\in\mathbf{R}: x^2\ge0$ $ \forall x\in\mathbf{R}: x^2\ge0$
 <code>\begin{eqnarray*} <code>\begin{eqnarray*}
Zeile 184: Zeile 188:
 \end{eqnarray*} \end{eqnarray*}
 ==== Indizes und Hochstellung ==== ==== Indizes und Hochstellung ====
-<code>$ \displaystyle a_i \qquad a_{i_j} $</code>+  $ \displaystyle a_i \qquad a_{\displaystyle i_j} $
 $ \displaystyle a_i \qquad a_{\displaystyle i_j} $ $ \displaystyle a_i \qquad a_{\displaystyle i_j} $
-<code>$ \displaystyle a^{\displaystyle i} \qquad a^{\displaystyle i^j} $</code>+  $ \displaystyle a^{\displaystyle i} \qquad a^{\displaystyle i^j} $
 $ \displaystyle a^{\displaystyle i} \qquad a^{\displaystyle i^j} $ $ \displaystyle a^{\displaystyle i} \qquad a^{\displaystyle i^j} $
-<code>$ _1x_2 \qquad x^3_4 \qquad a^{b^\alpha_\beta}_{c^\gamma_\delta} \qquad F^1_2 \qquad F{}^1_2$</code>+  $ _1x_2 \qquad x^3_4 \qquad a^{b^\alpha_\beta}_{c^\gamma_\delta} \qquad F^1_2 \qquad F{}^1_2$
 $ _1x_2 \qquad x^3_4 \qquad a^{b^\alpha_\beta}_{c^\gamma_\delta} \qquad F^1_2 \qquad F{}^1_2$ $ _1x_2 \qquad x^3_4 \qquad a^{b^\alpha_\beta}_{c^\gamma_\delta} \qquad F^1_2 \qquad F{}^1_2$
-<code>$ \displaystyle _1x_2 = \sqrt{\left(\frac{p}{2}\right)^2-q}$</code> +  Vergleiche $ \displaystyle _1x_2 = \sqrt{\left(\frac{p}{2}\right)^2-q}$ 
-$ \displaystyle _1x_2 = -\frac{p}{2}\pm \sqrt{\left(\frac{p}{2}\right)^2-q}$+  mit  $ _1x_2 = -\frac{p}{2}\pm \sqrt{\left(\frac{p}{2}\right)^2-q}$ ! 
 +Vergleiche $ \displaystyle _1x_2 = \sqrt{\left(\frac{p}{2}\right)^2-q}$ 
 +mit  $ _1x_2 = -\frac{p}{2}\pm \sqrt{\left(\frac{p}{2}\right)^2-q}$ !
  
 ==== Brüche ==== ==== Brüche ====
-<code>$ \frac{1}{2} \qquad \frac{n+1}{3}$</code>+  \displaystyle \frac{1}{2} \qquad \frac{n+1}{3}$
 $ \displaystyle \frac{1}{2} \qquad \frac{n+1}{3}$ $ \displaystyle \frac{1}{2} \qquad \frac{n+1}{3}$
-<code>$ \frac{x+y^2}{m+1} \qquad \frac{x+y^2}{m} + 1 \qquad x + \frac{y^2}{m}+1$</code>+  \displaystyle \frac{x+y^2}{m+1} \qquad \frac{x+y^2}{m} + 1 \qquad x + \frac{y^2}{m}+1$
 $ \displaystyle \frac{x+y^2}{m+1} \qquad \frac{x+y^2}{m} + 1 \qquad x + \frac{y^2}{m}+1$ $ \displaystyle \frac{x+y^2}{m+1} \qquad \frac{x+y^2}{m} + 1 \qquad x + \frac{y^2}{m}+1$
-<code>$x + \frac{y^2}{m+1} \qquad x + y^\frac{2}{m+1}$</code>+  $x + \frac{\displaystyle y^2}{\displaystyle m+1} \qquad x + y^\frac{\displaystyle 2}{\displaystyle m+1}$
 $x + \frac{\displaystyle y^2}{\displaystyle m+1} \qquad x + y^\frac{\displaystyle 2}{\displaystyle m+1}$ $x + \frac{\displaystyle y^2}{\displaystyle m+1} \qquad x + y^\frac{\displaystyle 2}{\displaystyle m+1}$
-<code>$ \displaystyle x + \frac{y^2}{m+1} \qquad x + y^\frac{2}{m+1}$</code>+  $ \displaystyle x + \frac{y^2}{m+1} \qquad x + y^\frac{2}{m+1}$
 $ \displaystyle x + \frac{y^2}{m+1} \qquad x + y^\frac{2}{m+1}$ $ \displaystyle x + \frac{y^2}{m+1} \qquad x + y^\frac{2}{m+1}$
-<code>$ \displaystyle \frac{\frac{x}{y}}{2} \qquad \frac{x}{\frac{y}{2}}$</code>+  $ \displaystyle \frac{\frac{x}{y}}{2} \qquad \frac{x}{\frac{y}{2}}$
 $ \displaystyle \frac{\frac{x}{y}}{2} \qquad \frac{x}{\frac{y}{2}}$ $ \displaystyle \frac{\frac{x}{y}}{2} \qquad \frac{x}{\frac{y}{2}}$
  
-<code>$x_0 + \frac{1}{x_1 +  +  $x_0 + \frac{1}{x_1 +  
-\frac{1}{x_2 + +  \frac{1}{x_2 + 
-\frac{1}{x_3 + +  \frac{1}{x_3 + 
-\frac{1}{x_4}}}}$</code>+  \frac{1}{x_4}}}}$
 $x_0 + \frac{1}{x_1 +  $x_0 + \frac{1}{x_1 + 
 \frac{1}{x_2 + \frac{1}{x_2 +
 \frac{1}{x_3 + \frac{1}{x_3 +
 \frac{1}{x_4}}}}$ \frac{1}{x_4}}}}$
-<code> + 
-$ \displaystyle x_0+\frac{1}{\displaystyle x_1 + \frac{\strut 1}{\displaystyle x_2 + \frac{\strut 1}{\displaystyle x_3 +  +  $ \displaystyle x_0 + \frac{1}{\displaystyle x_1 + 
-\frac{\strut 1}{\displaystyle x_4}}}}$ +  \frac{\strut 1}{\displaystyle x_2 + 
-</code>+  \frac{\strut 1}{\displaystyle x_3 +  
 +  \frac{\strut 1}{\displaystyle x_4}}}}$
  
 $ \displaystyle x_0+\frac{1}{\displaystyle x_1 + $ \displaystyle x_0+\frac{1}{\displaystyle x_1 +
Zeile 223: Zeile 230:
 \frac{\strut 1}{\displaystyle x_4}}}}$ \frac{\strut 1}{\displaystyle x_4}}}}$
 ==== Wurzeln ==== ==== Wurzeln ====
-<code>$ \sqrt 2 \qquad \sqrt{\displaystyle x^2-y^2} \qquad \sqrt{\alpha^2 + \beta^2 - \gamma^2}$</code>+  $ \sqrt 2 \qquad \sqrt{\displaystyle x^2-y^2} \qquad \sqrt{\alpha^2 + \beta^2 - \gamma^2}$
 $ \sqrt 2 \qquad \sqrt{\displaystyle x^2-y^2} \qquad \sqrt{\alpha^2 + \beta^2 - \gamma^2}$ $ \sqrt 2 \qquad \sqrt{\displaystyle x^2-y^2} \qquad \sqrt{\alpha^2 + \beta^2 - \gamma^2}$
-<code>$ \sqrt[3]{2} \qquad \sqrt[n]{\sqrt\alpha + \sqrt\beta} \qquad \sqrt[n+1]{a^n + b^n}$</code>+  $ \sqrt[3]{2} \qquad \sqrt[n]{\sqrt\alpha + \sqrt\beta} \qquad \sqrt[n+1]{a^n + b^n}$
 $ \sqrt[3]{2} \qquad \sqrt[n]{\sqrt\alpha + \sqrt\beta} \qquad \sqrt[n+1]{a^n + b^n}$ $ \sqrt[3]{2} \qquad \sqrt[n]{\sqrt\alpha + \sqrt\beta} \qquad \sqrt[n+1]{a^n + b^n}$
-<code>$ \sqrt a +\sqrt b +\sqrt c \qquad \sqrt{\mathstrut a} + \sqrt{\mathstrut b} + \sqrt{\mathstrut c}$</code>+  $ \sqrt a +\sqrt{b^2} +\sqrt c \qquad \sqrt{\mathstrut a} + \sqrt{\mathstrut b^2} + \sqrt{\mathstrut c}$
 $ \sqrt a +\sqrt{b^2} +\sqrt c \qquad \sqrt{\mathstrut a} + \sqrt{\mathstrut b^2} + \sqrt{\mathstrut c}$ $ \sqrt a +\sqrt{b^2} +\sqrt c \qquad \sqrt{\mathstrut a} + \sqrt{\mathstrut b^2} + \sqrt{\mathstrut c}$
-<code>$ \sqrt{1+ \sqrt{1+ \sqrt{1+ \sqrt{1+ \sqrt{1 + \sqrt{1+x}}}}}}$</code>+  $ \sqrt{1+ \sqrt{1+ \sqrt{1+ \sqrt{1+ \sqrt{1 + \sqrt{1+x}}}}}}$
 $ \sqrt{1+ \sqrt{1+ \sqrt{1+ \sqrt{1+ \sqrt{1 + \sqrt{1+x}}}}}}$ $ \sqrt{1+ \sqrt{1+ \sqrt{1+ \sqrt{1+ \sqrt{1 + \sqrt{1+x}}}}}}$
 ==== Binominalkoeffizienten ==== ==== Binominalkoeffizienten ====
-<code>${n \choose 2} \qquad {n+1 \choose k} \qquad \frac{\displaystyle{n \choose k}}{\displaystyle 2}$</code>+  ${n \choose 2} \qquad {n+1 \choose k} \qquad \frac{\displaystyle{n \choose k}}{\displaystyle 2}$
 ${n \choose 2} \qquad {n+1 \choose k} \qquad \frac{\displaystyle{n \choose k}}{\displaystyle 2}$ ${n \choose 2} \qquad {n+1 \choose k} \qquad \frac{\displaystyle{n \choose k}}{\displaystyle 2}$
-<code>${x \atop a+b} \qquad {n \atop k+1}$</code>+  ${x \atop a+b} \qquad {n \atop k+1}$
 ${x \atop a+b} \qquad {n \atop k+1}$ ${x \atop a+b} \qquad {n \atop k+1}$
-<code>$ \displaystyle \sum_{{\scriptstyle 1 \le i \le p \atop \scriptstyle 1 \le j \le q}} a_{ij} b_{ji}$</code>+  $ \displaystyle \sum_{{\scriptstyle 1 \le i \le p \atop \scriptstyle 1 \le j \le q}} a_{ij} b_{ji}$
 $ \displaystyle \sum_{{\scriptstyle 1 \le i \le p \atop \scriptstyle 1 \le j \le q}} a_{ij} b_{ji}$ $ \displaystyle \sum_{{\scriptstyle 1 \le i \le p \atop \scriptstyle 1 \le j \le q}} a_{ij} b_{ji}$
 ==== Limes, Ableitungen ==== ==== Limes, Ableitungen ====
-<code>$\displaystyle f\prime(x) = \lim_{\Delta x \to 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}$</code> +  $ \displaystyle f\prime(x) = \lim_{\Delta x \to 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}$ 
-$\displaystyle f\prime(x) = \lim_{\Delta x \to 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}$+$ \displaystyle f\prime(x) = \lim_{\Delta x \to 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}$ 
 <code>\begin{eqnarray*} <code>\begin{eqnarray*}
 f(x) & = & \cos x \\ f(x) & = & \cos x \\
Zeile 251: Zeile 259:
 f’’(x) & = & -\cos x \\ f’’(x) & = & -\cos x \\
 \end{eqnarray*} \end{eqnarray*}
 +
 <code>\begin{eqnarray*} <code>\begin{eqnarray*}
 h(x) & = & f(x) \cdot g(x)\\ h(x) & = & f(x) \cdot g(x)\\
Zeile 259: Zeile 268:
 \frac{h(x)}{\mathrm{d}x} & = & f(x)\cdot\frac{g(x)}{\mathrm{d}x}+\frac{f(x)}{\mathrm{d}x} \cdot g(x) \frac{h(x)}{\mathrm{d}x} & = & f(x)\cdot\frac{g(x)}{\mathrm{d}x}+\frac{f(x)}{\mathrm{d}x} \cdot g(x)
 \end{eqnarray*} \end{eqnarray*}
 +
 <code>\begin{eqnarray*} <code>\begin{eqnarray*}
 \mathbf{x} & = & \frac{1}{2} \mathbf{k} \cdot t^2 + \mathbf{v_0} \cdot t + \mathbf{x_0}\\ \mathbf{x} & = & \frac{1}{2} \mathbf{k} \cdot t^2 + \mathbf{v_0} \cdot t + \mathbf{x_0}\\
Zeile 264: Zeile 274:
 \ddot \mathbf{x} & = & \mathbf{k} \ddot \mathbf{x} & = & \mathbf{k}
 \end{eqnarray*}</code> \end{eqnarray*}</code>
 +
 <code>\begin{eqnarray*} <code>\begin{eqnarray*}
 \mathbf{x} & = & \frac{1}{2} \mathbf{k} \cdot t^2 + \mathbf{v_0} \cdot t + x_0\\ \mathbf{x} & = & \frac{1}{2} \mathbf{k} \cdot t^2 + \mathbf{v_0} \cdot t + x_0\\
Zeile 274: Zeile 285:
 \ddot{\mathbf{x}} & = & \mathbf{k} \ddot{\mathbf{x}} & = & \mathbf{k}
 \end{eqnarray*} \end{eqnarray*}
 +
 <code>\begin{eqnarray*} <code>\begin{eqnarray*}
 z (x, y) & = & xy\\ z (x, y) & = & xy\\
Zeile 284: Zeile 296:
 \frac{\partial z}{\partial y} & = & x \frac{\partial z}{\partial y} & = & x
 \end{eqnarray*} \end{eqnarray*}
 +
 <code>\begin{eqnarray*} <code>\begin{eqnarray*}
 z (x, y) & = & \frac{xy}{x^2+y^2} \quad(\forall x,y:x^2+y^2\not=0)\\ z (x, y) & = & \frac{xy}{x^2+y^2} \quad(\forall x,y:x^2+y^2\not=0)\\
Zeile 295: Zeile 308:
 \end{eqnarray*} \end{eqnarray*}
 ==== Summen ==== ==== Summen ====
-<code>\sum\limits_{i=2}^{\infty} \frac{\displaystyle(-1)^i}{\displaystyle i^2}= + 
-\displaystyle{\frac{1}{4}-\frac{1}{9}+\frac{1}{16}-\frac{1}{25}+}~\cdots$</code>+  \sum\limits_{i=2}^{\infty} \frac{\displaystyle(-1)^i}{\displaystyle i^2}= 
 +  \displaystyle{\frac{1}{4}-\frac{1}{9}+\frac{1}{16}-\frac{1}{25}+}~\cdots$ 
 $ \sum\limits_{i=2}^{\infty} \frac{\displaystyle(-1)^i}{\displaystyle i^2}=\displaystyle{\frac{1}{4}-\frac{1}{9}+\frac{1}{16}-\frac{1}{25}+}~\cdots$ $ \sum\limits_{i=2}^{\infty} \frac{\displaystyle(-1)^i}{\displaystyle i^2}=\displaystyle{\frac{1}{4}-\frac{1}{9}+\frac{1}{16}-\frac{1}{25}+}~\cdots$
 +
 <code>$ \sum\limits_{i=1}^p \sum\limits_{j=1}^q\sum\limits_{k=1}^r a_{ij}b_{jk}c_{ki}$</code> <code>$ \sum\limits_{i=1}^p \sum\limits_{j=1}^q\sum\limits_{k=1}^r a_{ij}b_{jk}c_{ki}$</code>
 $ \sum\limits_{i=1}^p \sum\limits_{j=1}^q\sum\limits_{k=1}^r a_{ij}b_{jk}c_{ki}$ $ \sum\limits_{i=1}^p \sum\limits_{j=1}^q\sum\limits_{k=1}^r a_{ij}b_{jk}c_{ki}$
Zeile 375: Zeile 391:
 $ \int\int_D\limits f(x, y) \mathrm{d}x \mathrm{d}y \qquad $ \int\int_D\limits f(x, y) \mathrm{d}x \mathrm{d}y \qquad
 \int\!\!\!\int_D\limits f(x, y)\,\mathrm{d}x\,\mathrm{d}y$ \int\!\!\!\int_D\limits f(x, y)\,\mathrm{d}x\,\mathrm{d}y$
-<code>$ \prod_{i=1}^n i = n! \qquad \prod\limits_{i=1}^n i = n! \qquad \prod\nolimits_{i=1}^n i = n!$</code>+ 
 +  $ \prod_{i=1}^n i = n! \qquad \prod\limits_{i=1}^n i = n! \qquad \prod\nolimits_{i=1}^n i = n!$
 $ \prod_{i=1}^n i = n! \qquad \prod\limits_{i=1}^n i = n! \qquad \prod\nolimits_{i=1}^n i = n!$ $ \prod_{i=1}^n i = n! \qquad \prod\limits_{i=1}^n i = n! \qquad \prod\nolimits_{i=1}^n i = n!$
-<code>$ \displaystyle{{n \choose k}} = \frac{\displaystyle\prod_{i=1}^n i} {\displaystyle\prod_{i=1}^k i\cdot \prod_{i=1}^{n-k} i}$</code>+ 
 +  $ \displaystyle{{n \choose k}} = \frac{\displaystyle\prod_{i=1}^n i} {\displaystyle\prod_{i=1}^k i\cdot \prod_{i=1}^{n-k} i}$
 $ \displaystyle{{n \choose k}} = \frac{\displaystyle\prod_{i=1}^n i} {\displaystyle\prod_{i=1}^k i\cdot \prod_{i=1}^{n-k} i}$ $ \displaystyle{{n \choose k}} = \frac{\displaystyle\prod_{i=1}^n i} {\displaystyle\prod_{i=1}^k i\cdot \prod_{i=1}^{n-k} i}$
 ==== Funktionen ==== ==== Funktionen ====
-<code>$ \displaystyle \lim_{x \to 0} \frac{\sin x}{x}=1$</code>+  $ \displaystyle \lim_{x \to 0} \frac{\sin x}{x}=1$
 $ \displaystyle \lim_{x \to 0} \frac{\sin x}{x}=1$ $ \displaystyle \lim_{x \to 0} \frac{\sin x}{x}=1$
 +  $ \displaystyle \int \frac{\mathrm{d}x} {\sin a x \cos a x} = \frac{1}{a} \ln \tan a x$
 $ \displaystyle \int \frac{\mathrm{d}x} {\sin a x \cos a x} = \frac{1}{a} \ln \tan a x$ $ \displaystyle \int \frac{\mathrm{d}x} {\sin a x \cos a x} = \frac{1}{a} \ln \tan a x$
-<code>$ \arcsin x = \left[ \arccos \sqrt{1 - x^2}\right]$</code>+  $ \arcsin x = \left[ \arccos \sqrt{1 - x^2}\right]$
 $ \arcsin x = \left[ \arccos \sqrt{1 - x^2}\right]$ $ \arcsin x = \left[ \arccos \sqrt{1 - x^2}\right]$
 ==== Matrizen ==== ==== Matrizen ====
spielplatz/mathematische-formeln-anleitung.1555232103.txt.gz · Zuletzt geändert: 2019/04/14 08:55 von wi
Nach oben
Public Domain
Driven by DokuWiki Recent changes RSS feed Valid CSS Valid XHTML 1.0