Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen angezeigt.

Link zu dieser Vergleichsansicht

Beide Seiten der vorigen RevisionVorhergehende Überarbeitung
Nächste Überarbeitung
Vorhergehende Überarbeitung
spielplatz:mathematische-formeln-anleitung [2019/02/11 15:04] – [Indizes und Hochstellung] wispielplatz:mathematische-formeln-anleitung [2023/04/18 09:12] (aktuell) – [Mathematische Formeln in Dokuwiki] wi
Zeile 1: Zeile 1:
 ====== Mathematische Formeln in Dokuwiki ====== ====== Mathematische Formeln in Dokuwiki ======
 +<columns>
 Zusammengestellt von M. Wilfling, HTBLA Kaindorf Zusammengestellt von M. Wilfling, HTBLA Kaindorf
  
-$xxx$+\frac{1}{x} $
 Wer möchte seine Wiki Seiten, die mathematische Formeln enthalten, professionell gestalten? Wer möchte seine Wiki Seiten, die mathematische Formeln enthalten, professionell gestalten?
  
Zeile 35: Zeile 36:
  
 ==== Inline Formel ==== ==== Inline Formel ====
-<code>Dieses ist eine wichtige Formel: $c = a + b$</code>+  Dieses ist eine wichtige Formel: $c = a + b$
 Dieses ist eine wichtige Formel: $c = a + b$ Dieses ist eine wichtige Formel: $c = a + b$
-<code>Für alle Zahlen $a_1, \dots, a_n$ gilt</code>+  Für alle Zahlen $a_1, \dots, a_n$ gilt
 Für alle Zahlen $a_1, \dots, a_n$ gilt Für alle Zahlen $a_1, \dots, a_n$ gilt
-<code>Seien $a$ und $b$ die Katheten +  Seien $a$ und $b$ die Katheten und $c$ die Hypotenuse, dann gilt 
-und $c$ die Hypotenuse, dann gilt +  $c=\sqrt{a^2+b^2}$ (Lehrsatz des Pythagoras). 
-$c=\sqrt{a^2+b^2}$ (Lehrsatz des +Seien $a$ und $b$ die Katheten und $c$ die Hypotenuse, dann gilt 
-Pythagoras).</code> +$c=\sqrt{a^2+b^2}$ (Lehrsatz des Pythagoras). 
-Seien $a$ und $b$ die Katheten +
-und $c$ die Hypotenuse, dann gilt +
-$c=\sqrt{a^2+b^2}$ (Lehrsatz des +
-Pythagoras).+
  ==== Abgesetzte Formel ====  ==== Abgesetzte Formel ====
-<code>Dieses ist eine wichtige Formel: $$y = f(x) = k~x + d$$</code>+  Dieses ist eine wichtige Formel: $$y = f(x) = k~x + d$$
 Dieses ist eine wichtige Formel: $$y = f(x) = k~x + d$$   Dieses ist eine wichtige Formel: $$y = f(x) = k~x + d$$  
  
-<code>Seien $a$ und $b$ die Katheten und $c$ die Hypotenuse, dann gilt $$c^2=a^2+b^2$$ +  Seien $a$ und $b$ die Katheten und $c$ die Hypotenuse, dann gilt $$c^2=a^2+b^2$$ 
-(Lehrsatz des Pythagoras).</code> +  (Lehrsatz des Pythagoras). 
-Seien $a$ und $b$ die Katheten und $c$ die Hypotenuse, dann gilt $$c^2=a^2+b^2$$ (Lehrsatz des Pythagoras).+Seien $a$ und $b$ die Katheten und $c$ die Hypotenuse, dann gilt $$c^2=a^2+b^2$$ 
 +(Lehrsatz des Pythagoras).
  
- ==== Zwischenraum, Abstand zwischen Formelzeichen ==== +==== Zwischenraum, Abstand zwischen Formelzeichen ==== 
-  $ab$, $a\,b$, $a\:b$, $a\;b$, $a\!b$+  $ab$, $a\,b$, $a\:b$, $a\;b$, $a\!b$, $a \quad b$, $a \qquad b$
  
-$ab$, $a\,b$, $a\:b$, $a\;b$, $a\!b$+$ab$, $a\,b$, $a\:b$, $a\;b$, $a\!b$, $a \quad b$, $a \qquad b$
  
 ==== Ein nummerierter Formelblock ==== ==== Ein nummerierter Formelblock ====
Zeile 91: Zeile 90:
  
 ==== Sonderzeichen und Griechische Buchstaben ==== ==== Sonderzeichen und Griechische Buchstaben ====
-<code>$\mathrm{A}\mathrm{B}\Gamma\Delta\mathrm{E}\mathrm{Z}\mathrm{H}\Theta\mathrm{I}\mathrm{K}\Lambda +  $ \mathrm{A}\mathrm{B}\Gamma\Delta\mathrm{E}\mathrm{Z}\mathrm{H}\Theta\mathrm{I}\mathrm{K}\Lambda 
-\mathrm{M}\mathrm{N}\Xi\mathrm{O}\Pi\mathrm{P}\Sigma\mathrm{T}\Phi\mathrm{X}\mathrm{Y}\Psi\Omega$</code> +  \mathrm{M}\mathrm{N}\Xi\mathrm{O}\Pi\mathrm{P}\Sigma\mathrm{T}\Phi\mathrm{X}\mathrm{Y}\Psi\Omega$ 
-$\mathrm{A}\mathrm{B}\Gamma\Delta\mathrm{E}\mathrm{Z}\mathrm{H}\Theta\mathrm{I}\mathrm{K}\Lambda\mathrm{M}\mathrm{N}\Xi\mathrm{O}\Pi\mathrm{P}\Sigma\mathrm{T}\Phi\mathrm{X}\mathrm{Y}\Psi\Omega$ + 
-<code>$\alpha\beta\gamma\delta\epsilon\zeta\eta\theta\iota\kappa\lambda\mu\nu\xi\mathrm{o}\pi\rho\sigma\tau\phi\chi\upsilon\psi\omega$</code> +$ \mathrm{A}\mathrm{B}\Gamma\Delta\mathrm{E}\mathrm{Z}\mathrm{H}\Theta\mathrm{I}\mathrm{K}\Lambda \mathrm{M}\mathrm{N}\Xi\mathrm{O}\Pi\mathrm{P}\Sigma\mathrm{T}\Phi\mathrm{X}\mathrm{Y}\Psi\Omega$ 
-$\alpha\beta\gamma\delta\epsilon\zeta\eta\theta\iota\kappa\lambda\mu\nu\xi\mathrm{o}\pi\rho\sigma\tau\phi\chi\upsilon\psi\omega$ + 
-<code>$\varepsilon \quad \vartheta \quad \varpi \quad \varrho \quad \varsigma \quad \varphi$</code> +  $ \alpha\beta\gamma\delta\epsilon\zeta\eta\theta\iota\kappa\lambda\mu\nu\xi\mathrm{o}\pi\rho\sigma\tau\phi\chi\upsilon\psi\omega$ 
-$\varepsilon \quad \vartheta \quad \varpi \quad \varrho \quad \varsigma \quad \varphi$ +$ \alpha\beta\gamma\delta\epsilon\zeta\eta\theta\iota\kappa\lambda\mu\nu\xi\mathrm{o}\pi\rho\sigma\tau\phi\chi\upsilon\psi\omega$ 
-<code>$\aleph\quad\Re\quad\Im\quad\partial\quad\infty\quad\forall\quad\exists\quad\neg\quad\in\quad\heartsuit$</code> +  $\varepsilon \quad \vartheta \quad \varpi \quad \varrho \quad \varsigma \quad \varphi$ 
-$\aleph\quad\Re\quad\Im\quad\partial\quad\infty\quad\forall\quad\exists\quad\neg\quad\in\quad\heartsuit$ +$ \varepsilon \quad \vartheta \quad \varpi \quad \varrho \quad \varsigma \quad \varphi$ 
-<code>$\forall \varepsilon>0:|f(x_1)-f(x_2)| < \varepsilon\quad\exists\eta: |x_1-x_2|<\eta$</code> +  $\aleph\quad\Re\quad\Im\quad\partial\quad\infty\quad\forall\quad\exists\quad\neg\quad\in\quad\heartsuit$ 
-$\forall \varepsilon>0:|f(x_1)-f(x_2)| < \varepsilon\quad\exists\eta: |x_1-x_2|<\eta$+$ \aleph\quad\Re\quad\Im\quad\partial\quad\infty\quad\forall\quad\exists\quad\neg\quad\in\quad\heartsuit$ 
 +  $ \forall \varepsilon>0:|f(x_1)-f(x_2)| < \varepsilon\quad\exists\eta: |x_1-x_2|<\eta$ 
 +$ \forall \varepsilon>0:|f(x_1)-f(x_2)| < \varepsilon\quad\exists\eta: |x_1-x_2|<\eta
 + 
 +  Eurozeichen mit Unicode: $ \unicode{0x20AC}$ 
 +Eurozeichen mit Unicode: $ \unicode{0x20AC}$
 ==== Klammern ==== ==== Klammern ====
-<code>$( ~ \lbrack ~ \lbrace ~ [ ~ \lfloor ~ \langle ~ \{ ~ \lceil$</code> +  $ ( ~ \lbrack ~ \lbrace ~ [ ~ \lfloor ~ \langle ~ \{ ~ \lceil$ 
-$( ~ \lbrack ~ \lbrace ~ [ ~ \lfloor ~ \langle ~ \{ ~ \lceil$ +$ ( ~ \lbrack ~ \lbrace ~ [ ~ \lfloor ~ \langle ~ \{ ~ \lceil$ 
-<code>$) ~ \rbrack ~ \rbrace ~ ]~ \rfloor ~ \rangle ~ \} ~  \rceil$</code> +  $ ) ~ \rbrack ~ \rbrace ~ ]~ \rfloor ~ \rangle ~ \} ~  \rceil$ 
-$) ~ \rbrack ~ \rbrace ~ ]~ \rfloor ~ \rangle ~ \} ~  \rceil$ +$ ) ~ \rbrack ~ \rbrace ~ ]~ \rfloor ~ \rangle ~ \} ~  \rceil$ 
-<code>$\Bigl( (x+1) (x-1)\Bigr) ^2$</code> +  $ \Bigl( (x+1) (x-1)\Bigr) ^2$ 
-$\Bigl( (x+1) (x-1)\Bigr) ^2$ +$ \Bigl( (x+1) (x-1)\Bigr) ^2$ 
-<code>$\left( (x+1) (x-1)\right) ^2$</code> +  $ \left( (x+1) (x-1)\right) ^2$ 
-$\left( (x+1) (x-1)\right) ^2$ +$ \left( (x+1) (x-1)\right) ^2$ 
-<code>$1 + \left(\frac{1}{1-x^2}\right)$</code> +  $ 1 + \left(\frac{1}{1-x^2}\right)$ 
-$1 + \left(\frac{1}{1-x^2}\right)$ +$ 1 + \left(\frac{1}{1-x^2}\right)$ 
-<code>$\underbrace{\overbrace{a + b + \cdots +z}^{26} + \overbrace{A + B + \cdots+Z}^{26}}_{52}$</code> +  $ \underbrace{\overbrace{a + b + \cdots +z}^{26} + \overbrace{A + B + \cdots+Z}^{26}}_{52}$ 
-$\underbrace{\overbrace{a + b + \cdots +z}^{26} + \overbrace{A + B + \cdots+Z}^{26}}_{52}$ +$ \underbrace{\overbrace{a + b + \cdots +z}^{26} + \overbrace{A + B + \cdots+Z}^{26}}_{52}$ 
-<code>$\overline{m+n} \qquad \underline{m+n}$</code> +  $ \overline{m+n} \qquad \underline{m+n}$ 
-$\overline{m+n} \qquad \underline{m+n}$+$ \overline{m+n} \qquad \underline{m+n}$
 ==== Operatoren ==== ==== Operatoren ====
-<code>$x = y > z \qquad x := y \qquad x \le y \ne z $</code>+  $x = y > z \qquad x := y \qquad x \le y \ne z $
 $x = y > z \qquad x := y \qquad x \le y \ne z$  $x = y > z \qquad x := y \qquad x \le y \ne z$ 
-<code>$x \sim y \simeq z \qquad x \equiv y \not\equiv z \qquad x \subset y \subseteq z$</code>+  $x \sim y \simeq z \qquad x \equiv y \not\equiv z \qquad x \subset y \subseteq z$
 $x \sim y \simeq z \qquad x \equiv y \not\equiv z \qquad x \subset y \subseteq z$ $x \sim y \simeq z \qquad x \equiv y \not\equiv z \qquad x \subset y \subseteq z$
-<code>$x + y - z \qquad x * y / z \qquad x \times y \cdot z$</code>+  $x + y - z \qquad x * y / z \qquad x \times y \cdot z$
 $x + y - z \qquad x * y / z \qquad x \times y \cdot z$ $x + y - z \qquad x * y / z \qquad x \times y \cdot z$
-<code>$x \circ y \bullet z \qquad x \cup y \cap z \qquad x \sqcup y \sqcap z$</code>+  $x \circ y \bullet z \qquad x \cup y \cap z \qquad x \sqcup y \sqcap z$
 $x \circ y \bullet z \qquad x \cup y \cap z \qquad x \sqcup y \sqcap z$ $x \circ y \bullet z \qquad x \cup y \cap z \qquad x \sqcup y \sqcap z$
-<code>$x \vee y \wedge z\qquad x \pm y \mp z$</code>+  $x \vee y \wedge z\qquad x \pm y \mp z$
 $x \vee y \wedge z\qquad x \pm y \mp z$ $x \vee y \wedge z\qquad x \pm y \mp z$
  
 ==== Akzente ==== ==== Akzente ====
-<code>$\hat a\qquad\check b\qquad\tilde c \qquad \acute d \qquad \grave$</code> +  $ \hat a \qquad \check b \qquad \tilde c \qquad \acute d \qquad \grave e
-$\hat a\qquad\check b\qquad\tilde c \qquad \acute d \qquad \grave$ +$ \hat a \qquad \check b \qquad \tilde c \qquad \acute d \qquad \grave e
-<code>$\dot f\qquad\ddot g\qquad\breve h \qquad \bar k \qquad \vec l$</code> +  $ \dot f\qquad\ddot g\qquad\breve h \qquad \bar k \qquad \vec l$ 
-$\dot f\qquad\ddot g\qquad\breve h \qquad \bar k \qquad \vec l$ +$ \dot f\qquad\ddot g\qquad\breve h \qquad \bar k \qquad \vec l$ 
-<code>$\hat\imath \qquad \check\jmath$</code> +  $ \hat\imath \qquad \check\jmath$ 
-$\hat\imath \qquad \check\jmath$ +$ \hat\imath \qquad \check\jmath$ 
-<code>$\widehat x \qquad \widehat{xy} \qquad \widehat{xyz}$</code> +  $ \widehat x \qquad \widehat{xy} \qquad \widehat{xyz}$ 
-$\widehat x \qquad \widehat{xy} \qquad \widehat{xyz}$ +$ \widehat x \qquad \widehat{xy} \qquad \widehat{xyz}$ 
-<code>$\widetilde x \qquad \widetilde{xy} \qquad \widetilde{xyz}$</code> +  $ \widetilde x \qquad \widetilde{xy} \qquad \widetilde{xyz}$ 
-$\widetilde x \qquad \widetilde{xy} \qquad \widetilde{xyz}$+$ \widetilde x \qquad \widetilde{xy} \qquad \widetilde{xyz}$
 ==== Vektoren ==== ==== Vektoren ====
-<code>$\alpha \cdot(\vec x + \vec y) = \alpha \cdot \vec x + \alpha \cdot \vec y$</code> +  $ \alpha \cdot(\vec x + \vec y) = \alpha \cdot \vec x + \alpha \cdot \vec y$ 
-$\alpha \cdot(\vec x + \vec y) = \alpha \cdot \vec x + \alpha \cdot \vec y$ +$ \alpha \cdot(\vec x + \vec y) = \alpha \cdot \vec x + \alpha \cdot \vec y$ 
-<code>$\vec x \cdot (\vec y \cdot \vec z) \not=(\vec x\cdot\vec y)\cdot \vec z$</code> +  $ \vec x \cdot (\vec y \cdot \vec z) \not=(\vec x\cdot\vec y)\cdot \vec z$ 
-$\vec x \cdot (\vec y \cdot \vec z) \not=(\vec x\cdot\vec y)\cdot \vec z$ +$ \vec x \cdot (\vec y \cdot \vec z) \not=(\vec x\cdot\vec y)\cdot \vec z$ 
-<code>$\vec x\times (\vec y\times \vec z) \not= (\vec x \times \vec y) \times \vec z$</code> +  $ \vec x\times (\vec y\times \vec z) \not= (\vec x \times \vec y) \times \vec z$ 
-$\vec x\times (\vec y\times \vec z) \not= (\vec x \times \vec y) \times \vec z$+$ \vec x\times (\vec y\times \vec z) \not= (\vec x \times \vec y) \times \vec z$
 ==== Pfeile ==== ==== Pfeile ====
-<code>$\leftarrow \qquad \Leftarrow \qquad \leftrightarrow \qquad +  $ \leftarrow \qquad \Leftarrow \qquad \leftrightarrow \qquad 
-\Leftrightarrow \qquad \uparrow\qquad\downarrow\qquad\nearrow$</code> +  \Leftrightarrow \qquad \uparrow\qquad\downarrow\qquad\nearrow$ 
-$\leftarrow \qquad \Leftarrow \qquad \leftrightarrow \qquad \Leftrightarrow \qquad \uparrow\qquad\downarrow\qquad\nearrow$ +$ \leftarrow \qquad \Leftarrow \qquad \leftrightarrow \qquad \Leftrightarrow \qquad \uparrow\qquad\downarrow\qquad\nearrow$ 
-<code>$\longleftarrow\qquad\leftharpoonup \qquad \mapsto \qquad \leadsto$</code> +  $\longleftarrow\qquad\leftharpoonup \qquad \mapsto \qquad \leadsto$ 
-$\longleftarrow\qquad\leftharpoonup \qquad \mapsto \qquad \leadsto$ +$ \longleftarrow\qquad\leftharpoonup \qquad \mapsto \qquad \leadsto$ 
-<code>$(\mathcal{A} \Rightarrow \mathcal{B}) \Longleftrightarrow +  $ (\mathcal{A} \Rightarrow \mathcal{B}) \Longleftrightarrow 
-(\lnot \mathcal{B} \Rightarrow \lnot \mathcal{A})$</code> +  (\lnot \mathcal{B} \Rightarrow \lnot \mathcal{A})$ 
-$(\mathcal{A} \Rightarrow \mathcal{B}) \Longleftrightarrow (\lnot \mathcal{B} \Rightarrow \lnot \mathcal{A})$ +$ (\mathcal{A} \Rightarrow \mathcal{B}) \Longleftrightarrow (\lnot \mathcal{B} \Rightarrow \lnot \mathcal{A})$ 
-<code>$(\mathcal{A} \Longleftrightarrow \mathcal{B}) \Longleftrightarrow +  $(\mathcal{A} \Longleftrightarrow \mathcal{B}) \Longleftrightarrow 
-(\mathcal{A}\Rightarrow \mathcal{B}) \wedge (\mathcal{B}\Rightarrow\mathcal{A})$ +  (\mathcal{A}\Rightarrow \mathcal{B}) \wedge (\mathcal{B}\Rightarrow\mathcal{A})$ 
-</code> + 
-$(\mathcal{A} \Longleftrightarrow \mathcal{B}) \Longleftrightarrow+$ (\mathcal{A} \Longleftrightarrow \mathcal{B}) \Longleftrightarrow
 (\mathcal{A}\Rightarrow \mathcal{B}) \wedge (\mathcal{B}\Rightarrow\mathcal{A})$ (\mathcal{A}\Rightarrow \mathcal{B}) \wedge (\mathcal{B}\Rightarrow\mathcal{A})$
  
 ==== Schriftartwechsel ==== ==== Schriftartwechsel ====
-<code>$\forall x\in\mathbf{R}: x^2\ge0$</code> +  $ \forall x\in\mathbf{R}: x^2\ge0$ 
-$\forall x\in\mathbf{R}: x^2\ge0$+$ \forall x\in\mathbf{R}: x^2\ge0$
 <code>\begin{eqnarray*} <code>\begin{eqnarray*}
 \mathbf{A} \cdot \mathbf{x} & = & \mathbf{A} \cdot \mathbf{x} & = &
Zeile 184: Zeile 188:
 \end{eqnarray*} \end{eqnarray*}
 ==== Indizes und Hochstellung ==== ==== Indizes und Hochstellung ====
-<code>$\displaystyle a_i \qquad a_{i_j} $</code> +  $ \displaystyle a_i \qquad a_{\displaystyle i_j} $ 
-$\displaystyle a_i \qquad a_{\displaystyle i_j} $ +$ \displaystyle a_i \qquad a_{\displaystyle i_j} $ 
-<code>$\displaystyle a^{\displaystyle i} \qquad a^{\displaystyle i^j} $</code> +  $ \displaystyle a^{\displaystyle i} \qquad a^{\displaystyle i^j} $ 
-$\displaystyle a^{\displaystyle i} \qquad a^{\displaystyle i^j} $ +$ \displaystyle a^{\displaystyle i} \qquad a^{\displaystyle i^j} $ 
-<code>$x^y^z \qquad x^{{\displaystyle y}^{\displaystyle z}}}$</code> +  $ _1x_2 \qquad x^3_4 \qquad a^{b^\alpha_\beta}_{c^\gamma_\delta} \qquad F^1_2 \qquad F{}^1_2$ 
-$$x^{y^z} \qquad x^{{\displaystyle y}^{\displaystyle z}}}$$ +$ _1x_2 \qquad x^3_4 \qquad a^{b^\alpha_\beta}_{c^\gamma_\delta} \qquad F^1_2 \qquad F{}^1_2$ 
-<code>$_1x_2 \qquad x^3_4 \qquad a^{b^\alpha_\beta}_{c^\gamma_\delta} \qquad F^1_2 \qquad F{}^1_2$</code> +  Vergleiche $ \displaystyle _1x_2 = \sqrt{\left(\frac{p}{2}\right)^2-q}$ 
-$_1x_2 \qquad x^3_4 \qquad a^{b^\alpha_\beta}_{c^\gamma_\delta} \qquad F^1_2 \qquad F{}^1_2$ +  mit  $ _1x_2 = -\frac{p}{2}\pm \sqrt{\left(\frac{p}{2}\right)^2-q}$ ! 
-<code>$ \displaystyle _1x_2 = \sqrt{\left(\frac{p}{2}\right)^2-q}$</code> +Vergleiche $ \displaystyle _1x_2 = \sqrt{\left(\frac{p}{2}\right)^2-q}$ 
-$\displaystyle _1x_2 = -\frac{p}{2}\pm \sqrt{\left(\frac{p}{2}\right)^2-q}$+mit  $ _1x_2 = -\frac{p}{2}\pm \sqrt{\left(\frac{p}{2}\right)^2-q}$ !
  
 ==== Brüche ==== ==== Brüche ====
-<code>$\frac{1}{2} \qquad \frac{n+1}{3}$</code> +  \displaystyle \frac{1}{2} \qquad \frac{n+1}{3}$ 
-$\displaystyle \frac{1}{2} \qquad \frac{n+1}{3}$ +$ \displaystyle \frac{1}{2} \qquad \frac{n+1}{3}$ 
-<code>$\frac{x+y^2}{m+1} \qquad \frac{x+y^2}{m} + 1 \qquad x + \frac{y^2}{m}+1$</code> +  \displaystyle \frac{x+y^2}{m+1} \qquad \frac{x+y^2}{m} + 1 \qquad x + \frac{y^2}{m}+1$ 
-$\displaystyle \frac{x+y^2}{m+1} \qquad \frac{x+y^2}{m} + 1 \qquad x + \frac{y^2}{m}+1$ +$ \displaystyle \frac{x+y^2}{m+1} \qquad \frac{x+y^2}{m} + 1 \qquad x + \frac{y^2}{m}+1$ 
-<code>$x + \frac{y^2}{m+1} \qquad x + y^\frac{2}{m+1}$</code>+  $x + \frac{\displaystyle y^2}{\displaystyle m+1} \qquad x + y^\frac{\displaystyle 2}{\displaystyle m+1}$
 $x + \frac{\displaystyle y^2}{\displaystyle m+1} \qquad x + y^\frac{\displaystyle 2}{\displaystyle m+1}$ $x + \frac{\displaystyle y^2}{\displaystyle m+1} \qquad x + y^\frac{\displaystyle 2}{\displaystyle m+1}$
-<code>$\displaystyle x + \frac{y^2}{m+1} \qquad x + y^\frac{2}{m+1}$</code> +  $ \displaystyle x + \frac{y^2}{m+1} \qquad x + y^\frac{2}{m+1}$ 
-$\displaystyle x + \frac{y^2}{m+1} \qquad x + y^\frac{2}{m+1}$ +$ \displaystyle x + \frac{y^2}{m+1} \qquad x + y^\frac{2}{m+1}$ 
-<code>$\displaystyle \frac{\frac{x}{y}}{2} \qquad \frac{x}{\frac{y}{2}}$</code> +  $ \displaystyle \frac{\frac{x}{y}}{2} \qquad \frac{x}{\frac{y}{2}}$ 
-$\displaystyle \frac{\frac{x}{y}}{2} \qquad \frac{x}{\frac{y}{2}}$ +$ \displaystyle \frac{\frac{x}{y}}{2} \qquad \frac{x}{\frac{y}{2}}$ 
-<code>$x_0 + \frac{1}{x_1 +  + 
-\frac{1}{x_2 + +  $x_0 + \frac{1}{x_1 +  
-\frac{1}{x_3 + +  \frac{1}{x_2 + 
-\frac{1}{x_4}}}}$</code>+  \frac{1}{x_3 + 
 +  \frac{1}{x_4}}}}$
 $x_0 + \frac{1}{x_1 +  $x_0 + \frac{1}{x_1 + 
 \frac{1}{x_2 + \frac{1}{x_2 +
 \frac{1}{x_3 + \frac{1}{x_3 +
 \frac{1}{x_4}}}}$ \frac{1}{x_4}}}}$
-<code>$\displaystyle x_0+\frac{1}{\displaystyle x_1 + + 
-\frac{\strut 1}{\displaystyle x_2 + +  $ \displaystyle x_0 + \frac{1}{\displaystyle x_1 + 
-\frac{\strut 1}{\displaystyle x_3 + +  \frac{\strut 1}{\displaystyle x_2 + 
-\frac{\strut 1}{\displaystyle x_4}}}}$</code> +  \frac{\strut 1}{\displaystyle x_3 +  
-$\displaystyle x_0+\frac{1}{\displaystyle x_1 ++  \frac{\strut 1}{\displaystyle x_4}}}}$ 
 + 
 +$ \displaystyle x_0+\frac{1}{\displaystyle x_1 +
 \frac{\strut 1}{\displaystyle x_2 + \frac{\strut 1}{\displaystyle x_2 +
 \frac{\strut 1}{\displaystyle x_3 + \frac{\strut 1}{\displaystyle x_3 +
 \frac{\strut 1}{\displaystyle x_4}}}}$ \frac{\strut 1}{\displaystyle x_4}}}}$
 ==== Wurzeln ==== ==== Wurzeln ====
-<code>$\sqrt 2 \qquad \sqrt{\displaystyle x^2-y^2} \qquad \sqrt{\alpha^2 + \beta^2 - \gamma^2}$</code> +  $ \sqrt 2 \qquad \sqrt{\displaystyle x^2-y^2} \qquad \sqrt{\alpha^2 + \beta^2 - \gamma^2}$ 
-$\sqrt 2 \qquad \sqrt{\displaystyle x^2-y^2} \qquad \sqrt{\alpha^2 + \beta^2 - \gamma^2}$ +$ \sqrt 2 \qquad \sqrt{\displaystyle x^2-y^2} \qquad \sqrt{\alpha^2 + \beta^2 - \gamma^2}$ 
-<code>$\sqrt[3]{2} \qquad \sqrt[n]{\sqrt\alpha + \sqrt\beta} \qquad \sqrt[n+1]{a^n + b^n}$</code> +  $ \sqrt[3]{2} \qquad \sqrt[n]{\sqrt\alpha + \sqrt\beta} \qquad \sqrt[n+1]{a^n + b^n}$ 
-$\sqrt[3]{2} \qquad \sqrt[n]{\sqrt\alpha + \sqrt\beta} \qquad \sqrt[n+1]{a^n + b^n}$ +$ \sqrt[3]{2} \qquad \sqrt[n]{\sqrt\alpha + \sqrt\beta} \qquad \sqrt[n+1]{a^n + b^n}$ 
-<code>$\sqrt a +\sqrt b +\sqrt c \qquad \sqrt{\mathstrut a} + \sqrt{\mathstrut b} + \sqrt{\mathstrut c}$</code> +  $ \sqrt a +\sqrt{b^2} +\sqrt c \qquad \sqrt{\mathstrut a} + \sqrt{\mathstrut b^2} + \sqrt{\mathstrut c}$ 
-$\sqrt a +\sqrt{b^2} +\sqrt c \qquad \sqrt{\mathstrut a} + \sqrt{\mathstrut b^2} + \sqrt{\mathstrut c}$ +$ \sqrt a +\sqrt{b^2} +\sqrt c \qquad \sqrt{\mathstrut a} + \sqrt{\mathstrut b^2} + \sqrt{\mathstrut c}$ 
-<code>$\sqrt{1+ \sqrt{1+ \sqrt{1+ \sqrt{1+ \sqrt{1 + \sqrt{1+x}}}}}}$</code> +  $ \sqrt{1+ \sqrt{1+ \sqrt{1+ \sqrt{1+ \sqrt{1 + \sqrt{1+x}}}}}}$ 
-$\sqrt{1+ \sqrt{1+ \sqrt{1+ \sqrt{1+ \sqrt{1 + \sqrt{1+x}}}}}}$+$ \sqrt{1+ \sqrt{1+ \sqrt{1+ \sqrt{1+ \sqrt{1 + \sqrt{1+x}}}}}}$
 ==== Binominalkoeffizienten ==== ==== Binominalkoeffizienten ====
-<code>${n \choose 2} \qquad {n+1 \choose k} \qquad \frac{\displaystyle{n \choose k}}{\displaystyle 2}$</code>+  ${n \choose 2} \qquad {n+1 \choose k} \qquad \frac{\displaystyle{n \choose k}}{\displaystyle 2}$
 ${n \choose 2} \qquad {n+1 \choose k} \qquad \frac{\displaystyle{n \choose k}}{\displaystyle 2}$ ${n \choose 2} \qquad {n+1 \choose k} \qquad \frac{\displaystyle{n \choose k}}{\displaystyle 2}$
-<code>${x \atop a+b} \qquad {n \atop k+1}$</code>+  ${x \atop a+b} \qquad {n \atop k+1}$
 ${x \atop a+b} \qquad {n \atop k+1}$ ${x \atop a+b} \qquad {n \atop k+1}$
-<code>$\displaystyle \sum_{{\scriptstyle 1 \le i \le p \atop \scriptstyle 1 \le j \le q}} a_{ij} b_{ji}$</code> +  $ \displaystyle \sum_{{\scriptstyle 1 \le i \le p \atop \scriptstyle 1 \le j \le q}} a_{ij} b_{ji}$ 
-$\displaystyle \sum_{{\scriptstyle 1 \le i \le p \atop \scriptstyle 1 \le j \le q}} a_{ij} b_{ji}$+$ \displaystyle \sum_{{\scriptstyle 1 \le i \le p \atop \scriptstyle 1 \le j \le q}} a_{ij} b_{ji}$
 ==== Limes, Ableitungen ==== ==== Limes, Ableitungen ====
-<code>$\displaystyle f\prime(x) = \lim_{\Delta x \to 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}$</code> +  $ \displaystyle f\prime(x) = \lim_{\Delta x \to 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}$ 
-$\displaystyle f\prime(x) = \lim_{\Delta x \to 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}$+$ \displaystyle f\prime(x) = \lim_{\Delta x \to 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}$ 
 <code>\begin{eqnarray*} <code>\begin{eqnarray*}
 f(x) & = & \cos x \\ f(x) & = & \cos x \\
Zeile 251: Zeile 259:
 f’’(x) & = & -\cos x \\ f’’(x) & = & -\cos x \\
 \end{eqnarray*} \end{eqnarray*}
 +
 <code>\begin{eqnarray*} <code>\begin{eqnarray*}
 h(x) & = & f(x) \cdot g(x)\\ h(x) & = & f(x) \cdot g(x)\\
Zeile 259: Zeile 268:
 \frac{h(x)}{\mathrm{d}x} & = & f(x)\cdot\frac{g(x)}{\mathrm{d}x}+\frac{f(x)}{\mathrm{d}x} \cdot g(x) \frac{h(x)}{\mathrm{d}x} & = & f(x)\cdot\frac{g(x)}{\mathrm{d}x}+\frac{f(x)}{\mathrm{d}x} \cdot g(x)
 \end{eqnarray*} \end{eqnarray*}
 +
 <code>\begin{eqnarray*} <code>\begin{eqnarray*}
 \mathbf{x} & = & \frac{1}{2} \mathbf{k} \cdot t^2 + \mathbf{v_0} \cdot t + \mathbf{x_0}\\ \mathbf{x} & = & \frac{1}{2} \mathbf{k} \cdot t^2 + \mathbf{v_0} \cdot t + \mathbf{x_0}\\
Zeile 264: Zeile 274:
 \ddot \mathbf{x} & = & \mathbf{k} \ddot \mathbf{x} & = & \mathbf{k}
 \end{eqnarray*}</code> \end{eqnarray*}</code>
 +
 <code>\begin{eqnarray*} <code>\begin{eqnarray*}
 \mathbf{x} & = & \frac{1}{2} \mathbf{k} \cdot t^2 + \mathbf{v_0} \cdot t + x_0\\ \mathbf{x} & = & \frac{1}{2} \mathbf{k} \cdot t^2 + \mathbf{v_0} \cdot t + x_0\\
Zeile 274: Zeile 285:
 \ddot{\mathbf{x}} & = & \mathbf{k} \ddot{\mathbf{x}} & = & \mathbf{k}
 \end{eqnarray*} \end{eqnarray*}
 +
 <code>\begin{eqnarray*} <code>\begin{eqnarray*}
 z (x, y) & = & xy\\ z (x, y) & = & xy\\
Zeile 284: Zeile 296:
 \frac{\partial z}{\partial y} & = & x \frac{\partial z}{\partial y} & = & x
 \end{eqnarray*} \end{eqnarray*}
 +
 <code>\begin{eqnarray*} <code>\begin{eqnarray*}
 z (x, y) & = & \frac{xy}{x^2+y^2} \quad(\forall x,y:x^2+y^2\not=0)\\ z (x, y) & = & \frac{xy}{x^2+y^2} \quad(\forall x,y:x^2+y^2\not=0)\\
Zeile 295: Zeile 308:
 \end{eqnarray*} \end{eqnarray*}
 ==== Summen ==== ==== Summen ====
-<code>$\sum\limits_{i=2}^{\infty} \frac{\displaystyle(-1)^i}{\displaystyle i^2}= + 
-\displaystyle{\frac{1}{4}-\frac{1}{9}+\frac{1}{16}-\frac{1}{25}+}~\cdots$</code> +  \sum\limits_{i=2}^{\infty} \frac{\displaystyle(-1)^i}{\displaystyle i^2}= 
-$\sum\limits_{i=2}^{\infty} \frac{\displaystyle(-1)^i}{\displaystyle i^2}=\displaystyle{\frac{1}{4}-\frac{1}{9}+\frac{1}{16}-\frac{1}{25}+}~\cdots$ +  \displaystyle{\frac{1}{4}-\frac{1}{9}+\frac{1}{16}-\frac{1}{25}+}~\cdots$ 
-<code>$\sum\limits_{i=1}^p \sum\limits_{j=1}^q\sum\limits_{k=1}^r a_{ij}b_{jk}c_{ki}$</code> + 
-$\sum\limits_{i=1}^p \sum\limits_{j=1}^q\sum\limits_{k=1}^r a_{ij}b_{jk}c_{ki}$ +$ \sum\limits_{i=2}^{\infty} \frac{\displaystyle(-1)^i}{\displaystyle i^2}=\displaystyle{\frac{1}{4}-\frac{1}{9}+\frac{1}{16}-\frac{1}{25}+}~\cdots$ 
-<code>$\sum\limits_{i=1}^p \sum\limits_{j=1}^q\sum\limits_{k=1}^r a_{ij}b_{jk}c_{ki} \qquad + 
-\sum\limits_{{\scriptstyle 1 \le i \le p \atop \scriptstyle 1 \le j \le q} \atop \scriptstyle 1 \le k \le r} +<code>$ \sum\limits_{i=1}^p \sum\limits_{j=1}^q\sum\limits_{k=1}^r a_{ij}b_{jk}c_{ki}$</code> 
-a_{ij} b_{jk} c_{ki}$</code> +$ \sum\limits_{i=1}^p \sum\limits_{j=1}^q\sum\limits_{k=1}^r a_{ij}b_{jk}c_{ki}$ 
-$\sum\limits_{i=1}^p \sum\limits_{j=1}^q\sum\limits_{k=1}^r a_{ij}b_{jk}c_{ki} \qquad+<code>$ \sum\limits_{i=1}^p \sum\limits_{j=1}^q\sum\limits_{k=1}^r a_{ij}b_{jk}c_{ki} \qquad
 \sum\limits_{{\scriptstyle 1 \le i \le p \atop \scriptstyle 1 \le j \le q} \atop \scriptstyle 1 \le k \le r} \sum\limits_{{\scriptstyle 1 \le i \le p \atop \scriptstyle 1 \le j \le q} \atop \scriptstyle 1 \le k \le r}
 a_{ij} b_{jk} c_{ki}$ a_{ij} b_{jk} c_{ki}$
 +</code>
 +$ \sum\limits_{{\scriptstyle 1 \le i \le p \atop \scriptstyle 1 \le j \le q} \atop \scriptstyle 1 \le k \le r} a_{ij} b_{jk} c_{ki} $
 +
 +
 ==== Reihen ==== ==== Reihen ====
-<code>\begin{eqnarray*}+<code> 
 +\begin{eqnarray*}
 \sum_{i=0}^{\infty}(-1)^i \frac{1}{2i+1} & = & 1 - \frac{1}{3}+\frac{1}{5}-\cdots\\ \sum_{i=0}^{\infty}(-1)^i \frac{1}{2i+1} & = & 1 - \frac{1}{3}+\frac{1}{5}-\cdots\\
 & = & \frac{\pi}{4} & = & \frac{\pi}{4}
 \end{eqnarray*}</code> \end{eqnarray*}</code>
 +
 \begin{eqnarray*} \begin{eqnarray*}
 \sum_{i=0}^{\infty}(-1)^i \frac{1}{2i+1} & = & 1 - \frac{1}{3}+\frac{1}{5}-\cdots\\ \sum_{i=0}^{\infty}(-1)^i \frac{1}{2i+1} & = & 1 - \frac{1}{3}+\frac{1}{5}-\cdots\\
 & = & \frac{\pi}{4} & = & \frac{\pi}{4}
 \end{eqnarray*} \end{eqnarray*}
-<code>\begin{eqnarray*}+ 
 +<code> 
 +\begin{eqnarray*}
 \sum_{i=1}^{\infty}(-1)^{i+1} \frac{1}{i^2} & = & 1-\frac{1}{2^2} + \frac{1}{3^2} - \cdots\\ \sum_{i=1}^{\infty}(-1)^{i+1} \frac{1}{i^2} & = & 1-\frac{1}{2^2} + \frac{1}{3^2} - \cdots\\
 & = & \frac{\pi^2}{12} & = & \frac{\pi^2}{12}
-\end{eqnarray*}</code>+\end{eqnarray*} 
 +</code>
 \begin{eqnarray*} \begin{eqnarray*}
 \sum_{i=1}^{\infty}(-1)^{i+1} \frac{1}{i^2} & = & 1-\frac{1}{2^2} + \frac{1}{3^2} - \cdots\\ \sum_{i=1}^{\infty}(-1)^{i+1} \frac{1}{i^2} & = & 1-\frac{1}{2^2} + \frac{1}{3^2} - \cdots\\
 & = & \frac{\pi^2}{12} & = & \frac{\pi^2}{12}
 \end{eqnarray*} \end{eqnarray*}
-<code>\begin{eqnarray*}+ 
 +<code> 
 +\begin{eqnarray*}
 \forall x \in \mathbf{R}:e^{-x} & = & \forall x \in \mathbf{R}:e^{-x} & = &
 1 - x + \frac{x^2}{2!} - 1 - x + \frac{x^2}{2!} -
Zeile 330: Zeile 354:
 (-1)^i\frac{x^i}{i!} (-1)^i\frac{x^i}{i!}
 \end{eqnarray*}</code> \end{eqnarray*}</code>
 +
 \begin{eqnarray*} \begin{eqnarray*}
 \forall x \in \mathbf{R}:e^{-x} & = & \forall x \in \mathbf{R}:e^{-x} & = &
Zeile 337: Zeile 362:
 (-1)^i\frac{x^i}{i!} (-1)^i\frac{x^i}{i!}
 \end{eqnarray*} \end{eqnarray*}
-<code>\begin{eqnarray*}+ 
 +<code> 
 +\begin{eqnarray*}
 \forall x \in \mathbf{R}:e^{x} & = & \forall x \in \mathbf{R}:e^{x} & = &
 1 + x + \frac{x^2}{2!} + 1 + x + \frac{x^2}{2!} +
Zeile 349: Zeile 376:
 &=&\sum_{i=0}^{\infty}\frac{x^i}{i!} &=&\sum_{i=0}^{\infty}\frac{x^i}{i!}
 \end{eqnarray*} \end{eqnarray*}
-<code>$ \displaystyle \lim_{n \to \infty} \sum_{k=1}^n \frac{1}{k^2} = \frac{\pi^2}{6} $</code> + 
-$\displaystyle \lim_{n \to \infty} \sum_{k=1}^n \frac{1}{k^2} = \frac{\pi^2}{6}$+<code>$ \displaystyle \lim_{n \to \infty} \sum_{k=1}^n \frac{1}{k^2} = \frac{\pi^2}{6} $ 
 +</code> 
 +$ \displaystyle \lim_{n \to \infty} \sum_{k=1}^n \frac{1}{k^2} = \frac{\pi^2}{6}$ 
 ==== Integrale ==== ==== Integrale ====
-<code>$\int\limits_{-\infty}^{\infty}\displaystyle{\frac{1}{1 + x^2}} \mathrm{d}x \qquad$ +<code>$ \int\limits_{-\infty}^{\infty}\displaystyle{\frac{1}{1 + x^2}} \mathrm{d}x \qquad$ 
-$\int\limits_0^{\frac{\pi}{3}}\cos x~\mathrm{d}x \qquad$ +$ \int\limits_0^{\frac{\pi}{3}}\cos x~\mathrm{d}x \qquad$ 
-$\int\int_D\limits f(x, y) \mathrm{d}x \mathrm{d}y \qquad+$ \int\int_D\limits f(x, y) \mathrm{d}x \mathrm{d}y \qquad
 \int\!\!\!\int_D\limits f(x, y)\,\mathrm{d}x\,\mathrm{d}y$ \int\!\!\!\int_D\limits f(x, y)\,\mathrm{d}x\,\mathrm{d}y$
 </code> </code>
-$\int\limits_{-\infty}^{\infty}\displaystyle{\frac{1}{1 + x^2}} \mathrm{d}x \qquad$ +$ \int\limits_{-\infty}^{\infty}\displaystyle{\frac{1}{1 + x^2}} \mathrm{d}x \qquad$ 
-$\int\limits_0^{\frac{\pi}{3}}\cos x~\mathrm{d}x \qquad$ +$ \int\limits_0^{\frac{\pi}{3}}\cos x~\mathrm{d}x \qquad$ 
-$\int\int_D\limits f(x, y) \mathrm{d}x \mathrm{d}y \qquad+$ \int\int_D\limits f(x, y) \mathrm{d}x \mathrm{d}y \qquad
 \int\!\!\!\int_D\limits f(x, y)\,\mathrm{d}x\,\mathrm{d}y$ \int\!\!\!\int_D\limits f(x, y)\,\mathrm{d}x\,\mathrm{d}y$
-<code>$\prod_{i=1}^n i = n! \qquad \prod\limits_{i=1}^n i = n! \qquad \prod\nolimits_{i=1}^n i = n!$</code> + 
-$\prod_{i=1}^n i = n! \qquad \prod\limits_{i=1}^n i = n! \qquad \prod\nolimits_{i=1}^n i = n!$ +  $ \prod_{i=1}^n i = n! \qquad \prod\limits_{i=1}^n i = n! \qquad \prod\nolimits_{i=1}^n i = n!$ 
-<code>$\displaystyle{{n \choose k}} = \frac{\displaystyle\prod_{i=1}^n i} {\displaystyle\prod_{i=1}^k i\cdot \prod_{i=1}^{n-k} i}$</code> +$ \prod_{i=1}^n i = n! \qquad \prod\limits_{i=1}^n i = n! \qquad \prod\nolimits_{i=1}^n i = n!$ 
-$\displaystyle{{n \choose k}} = \frac{\displaystyle\prod_{i=1}^n i} {\displaystyle\prod_{i=1}^k i\cdot \prod_{i=1}^{n-k} i}$+ 
 +  $ \displaystyle{{n \choose k}} = \frac{\displaystyle\prod_{i=1}^n i} {\displaystyle\prod_{i=1}^k i\cdot \prod_{i=1}^{n-k} i}$ 
 +$ \displaystyle{{n \choose k}} = \frac{\displaystyle\prod_{i=1}^n i} {\displaystyle\prod_{i=1}^k i\cdot \prod_{i=1}^{n-k} i}$
 ==== Funktionen ==== ==== Funktionen ====
-<code>$\displaystyle \lim_{x \to 0} \frac{\sin x}{x}=1$</code> +  $ \displaystyle \lim_{x \to 0} \frac{\sin x}{x}=1$ 
-$\displaystyle \lim_{x \to 0} \frac{\sin x}{x}=1$ +$ \displaystyle \lim_{x \to 0} \frac{\sin x}{x}=1$ 
-$\displaystyle \int \frac{\mathrm{d}x} {\sin a x \cos a x} = \frac{1}{a} \ln \tan a x$ +  $ \displaystyle \int \frac{\mathrm{d}x} {\sin a x \cos a x} = \frac{1}{a} \ln \tan a x$ 
-<code>$\arcsin x = \left[ \arccos \sqrt{1 - x^2}\right]$</code> +$ \displaystyle \int \frac{\mathrm{d}x} {\sin a x \cos a x} = \frac{1}{a} \ln \tan a x$ 
-$\arcsin x = \left[ \arccos \sqrt{1 - x^2}\right]$+  $ \arcsin x = \left[ \arccos \sqrt{1 - x^2}\right]$ 
 +$ \arcsin x = \left[ \arccos \sqrt{1 - x^2}\right]$
 ==== Matrizen ==== ==== Matrizen ====
-<code>$\begin{array}{|cccc|} +<code>$ \begin{array}{|cccc|} 
-a_{11} & a_{12} & \cdots & a_{1n} \\ +a_{11} & a_{12} & \cdots & a_{1n} \\\\ 
-a_{21} & a_{22} & \cdots & a_{21} \\ +a_{21} & a_{22} & \cdots & a_{21} \\\\ 
-\vdots & \vdots & \ddots & \vdots \\+\vdots & \vdots & \ddots & \vdots \\\\
 a_{m1} & a_{m2} & \cdots & a_{mn} a_{m1} & a_{m2} & \cdots & a_{mn}
 \end{array}$</code> \end{array}$</code>
-$\begin{array}{|cccc|} +$ \begin{array}{|cccc|} 
-a_{11} & a_{12} & \cdots & a_{1n} \\ +a_{11} & a_{12} & \cdots & a_{1n} \\\\ 
-a_{21} & a_{22} & \cdots & a_{21} \\ +a_{21} & a_{22} & \cdots & a_{21} \\\\ 
-\vdots & \vdots & \ddots & \vdots \\+\vdots & \vdots & \ddots & \vdots \\\\
 a_{m1} & a_{m2} & \cdots & a_{mn} a_{m1} & a_{m2} & \cdots & a_{mn}
 \end{array}$ \end{array}$
-<code>$\begin{displaymath} + 
-\left\{\begin{array}{cccc} +<code>$ \left\{\begin{array}{cccc} 
-\Gamma_{11} & \Gamma_{12} & \cdots & +\Gamma_{11} & \Gamma_{12} & \cdots & \Gamma_{1n}\\\\ 
-\Gamma_{1n}\\ +\Gamma_{21} & \Gamma_{22} & \cdots & \Gamma_{2n}\\\\ 
-\Gamma_{21} & \Gamma_{22} & \cdots & +\vdots & \vdots & \ddots & \vdots\\\\ 
-\Gamma_{2n}\\ +\Gamma_{m1} & \Gamma_{m2} & \cdots & \Gamma_{mn} 
-\vdots & \vdots & \ddots & +\end{array}\right\}$ 
-\vdots\\ +</code> 
-\Gamma_{m1} & \Gamma_{m2} & \cdots & + 
-\Gamma_{mn} +$ \left\{\begin{array}{cccc} 
-\end{array}\right\} +\Gamma_{11} & \Gamma_{12} & \cdots & \Gamma_{1n}\\\\ 
-\end{displaymath}$</code> +\Gamma_{21} & \Gamma_{22} & \cdots & \Gamma_{2n}\\\\ 
-$\begin{displaymath} +\vdots & \vdots & \ddots & \vdots\\\\ 
-\left\{\begin{array}{cccc} +\Gamma_{m1} & \Gamma_{m2} & \cdots & \Gamma_{mn} 
-\Gamma_{11} & \Gamma_{12} & \cdots & +\end{array}\right\}$ 
-\Gamma_{1n}\\ + 
-\Gamma_{21} & \Gamma_{22} & \cdots & +<code>$ |x|= \left\{ \begin{array}{ll} 
-\Gamma_{2n}\\ +x & \textrm{fuer } x \ge 0\\\\ 
-\vdots & \vdots & \ddots & +-x & \textrm{fuer } x < 0\\\\ 
-\vdots\\ +\end{array}\right\}$ 
-\Gamma_{m1} & \Gamma_{m2} & \cdots & +</code> 
-\Gamma_{mn} + 
-\end{array}\right\} +$ |x|= \left\{ \begin{array}{ll} 
-\end{displaymath}$ +x & \textrm{fuer } x \ge 0\\\\ 
-<code>$|x|= \left\{ \begin{array}{ll} +-x & \textrm{fuer } x < 0\\\\ 
-x & \textrm{f¨ur } x \ge 0\\ +\end{array}\right\}$ 
--x & \textrm{f¨ur } x < 0\\ + 
-\end{array}\right.$</code> +<code>$ \left(
-$|x|= \left\{ \begin{array}{ll} +
-x & \textrm{f¨ur } x \ge 0\\ +
--x & \textrm{f¨ur } x < 0\\ +
-\end{array}\right.+
-<code>$\left(+
 \begin{array}{c@{}c@{}c} \begin{array}{c@{}c@{}c}
 \begin{array}{|cc|} \begin{array}{|cc|}
 \hline \hline
-a_{11} & a_{12} \\ +a_{11} & a_{12} \\\\ 
-a_{21} & a_{22} \\+a_{21} & a_{22} \\\\
 \hline \hline
-\end{array} & 0 & 0 \\+\end{array} & 0 & 0 \\\\
 0 & \begin{array}{|ccc|} 0 & \begin{array}{|ccc|}
 \hline \hline
-b_{11} & b_{12} & b_{13}\\ +b_{11} & b_{12} & b_{13}\\\\ 
-b_{21} & b_{22} & b_{23}\\ +b_{21} & b_{22} & b_{23}\\\\ 
-b_{31} & b_{32} & b_{33}\\+b_{31} & b_{32} & b_{33}\\\\
 \hline \hline
-\end{array} & 0 \\+\end{array} & 0 \\\\
 0 & 0 & \begin{array}{|cc|} 0 & 0 & \begin{array}{|cc|}
 \hline \hline
-c_{11} & c_{12} \\ +c_{11} & c_{12} \\\\ 
-c_{21} & c_{22} \\+c_{21} & c_{22} \\\\
 \hline \hline
-\end{array} \\+\end{array} \\\\
 \end{array} \end{array}
-\right)$</code> +\right)$ 
-$\left(+</code> 
 + 
 +$ \left(
 \begin{array}{c@{}c@{}c} \begin{array}{c@{}c@{}c}
 \begin{array}{|cc|} \begin{array}{|cc|}
 \hline \hline
-a_{11} & a_{12} \\ +a_{11} & a_{12} \\\\ 
-a_{21} & a_{22} \\+a_{21} & a_{22} \\\\
 \hline \hline
-\end{array} & 0 & 0 \\+\end{array} & 0 & 0 \\\\
 0 & \begin{array}{|ccc|} 0 & \begin{array}{|ccc|}
 \hline \hline
-b_{11} & b_{12} & b_{13}\\ +b_{11} & b_{12} & b_{13}\\\\ 
-b_{21} & b_{22} & b_{23}\\ +b_{21} & b_{22} & b_{23}\\\\ 
-b_{31} & b_{32} & b_{33}\\+b_{31} & b_{32} & b_{33}\\\\
 \hline \hline
-\end{array} & 0 \\+\end{array} & 0 \\\\
 0 & 0 & \begin{array}{|cc|} 0 & 0 & \begin{array}{|cc|}
 \hline \hline
-c_{11} & c_{12} \\ +c_{11} & c_{12} \\\\ 
-c_{21} & c_{22} \\+c_{21} & c_{22} \\\\
 \hline \hline
-\end{array} \\+\end{array} \\\\
 \end{array} \end{array}
 \right)$ \right)$
- +<newcolumn> 
 +</columns>
spielplatz/mathematische-formeln-anleitung.1549897493.txt.gz · Zuletzt geändert: 2019/02/11 15:04 von wi
Nach oben
Public Domain
Driven by DokuWiki Recent changes RSS feed Valid CSS Valid XHTML 1.0