Unterschiede
Hier werden die Unterschiede zwischen zwei Versionen angezeigt.
Nächste Überarbeitung | Vorhergehende Überarbeitung | ||
spielplatz:mathematische-formeln-anleitung [2017/12/18 14:36] – angelegt wi | spielplatz:mathematische-formeln-anleitung [2023/04/18 09:12] (aktuell) – [Mathematische Formeln in Dokuwiki] wi | ||
---|---|---|---|
Zeile 1: | Zeile 1: | ||
+ | ====== Mathematische Formeln in Dokuwiki ====== | ||
+ | < | ||
+ | Zusammengestellt von M. Wilfling, HTBLA Kaindorf | ||
+ | 1x | ||
+ | Wer möchte seine Wiki Seiten, die mathematische Formeln enthalten, professionell gestalten? | ||
+ | |||
+ | Falls in Wiki Seiten mathematische Formeln vorkommen, erfolgt dies auf Mediawiki oder z.B. wie hier in Dokuwiki mit der Latex-Syntax. Latex ist ist ein Textverarbeitungssystem, | ||
+ | |||
+ | Eine große Hemmschwelle beim Einsatz von Latex ist die Tatsache, dass Latex nicht nach dem Prinzip '' | ||
+ | |||
+ | ===== Befehle zur Formeleingabe ===== | ||
+ | |||
+ | <WRAP tip> | ||
+ | **Keine Angst vor Befehlen!** | ||
+ | |||
+ | Alle unten stehenden Beispiele können leicht kopiert, modifiziert und in eigenen Wikis eingebaut werden. | ||
+ | </ | ||
+ | |||
+ | In modernen Wikis (mit installiertem '' | ||
+ | |||
+ | Bitte unbedingt von oben nach unten lesen. Es ist für alle etwas dabei: Einsteiger eher weiter oben suchen, nach unten eher für Fortgeschrittene! | ||
+ | ===== Mathemmatische Umgebungen im Wiki Text ===== | ||
+ | |||
+ | Mit der folgenden Syntax erkennt das installierte Plugin den Code für mathematische Befehle, der dann kompiliert wird: | ||
+ | ^ Eingabe ^ Auswirkung | | ||
+ | | '' | ||
+ | | '' | ||
+ | | '' | ||
+ | | '' | ||
+ | | '' | ||
+ | | '' | ||
+ | | '' | ||
+ | |||
+ | ===== Beispiele ===== | ||
+ | |||
+ | ==== Inline Formel ==== | ||
+ | Dieses ist eine wichtige Formel: c=a+b | ||
+ | Dieses ist eine wichtige Formel: c=a+b | ||
+ | Für alle Zahlen a1,…,an gilt | ||
+ | Für alle Zahlen a1,…,an gilt | ||
+ | Seien a und b die Katheten und c die Hypotenuse, dann gilt | ||
+ | c=√a2+b2 (Lehrsatz des Pythagoras). | ||
+ | Seien a und b die Katheten und c die Hypotenuse, dann gilt | ||
+ | c=√a2+b2 (Lehrsatz des Pythagoras). | ||
+ | |||
+ | ==== Abgesetzte Formel ==== | ||
+ | Dieses ist eine wichtige Formel: y=f(x)=k x+d | ||
+ | Dieses ist eine wichtige Formel: y=f(x)=k x+d | ||
+ | |||
+ | Seien a und b die Katheten und c die Hypotenuse, dann gilt c2=a2+b2 | ||
+ | (Lehrsatz des Pythagoras). | ||
+ | Seien a und b die Katheten und c die Hypotenuse, dann gilt c2=a2+b2 | ||
+ | (Lehrsatz des Pythagoras). | ||
+ | |||
+ | ==== Zwischenraum, | ||
+ | ab, ab, ab, ab, ab, ab, ab | ||
+ | |||
+ | ab, ab, ab, ab, ab, ab, ab | ||
+ | |||
+ | ==== Ein nummerierter Formelblock ==== | ||
+ | < | ||
+ | f(x) & = & \cos x \\ | ||
+ | f’(x) & = & - \sin x \\ | ||
+ | \int_0^xf(y)\mathrm{d}y& | ||
+ | \end{eqnarray}</ | ||
+ | \begin{eqnarray} | ||
+ | f(x) & = & \cos x \\ | ||
+ | f’(x) & = & - \sin x \\ | ||
+ | \int_0^xf(y)\mathrm{d}y& | ||
+ | \end{eqnarray} | ||
+ | Das Zeichen ''&'' | ||
+ | < | ||
+ | & a+b & c+d\\ | ||
+ | & x+y & u+v\\ | ||
+ | \end{eqnarray}</ | ||
+ | \begin{eqnarray} | ||
+ | & a+b & c+d\\ | ||
+ | & x+y & u+v | ||
+ | \end{eqnarray} | ||
+ | |||
+ | ==== Feld von Formeln ohne Nummerierung ==== | ||
+ | < | ||
+ | & a+b & c+d\\ | ||
+ | & x+y & u+v\\ | ||
+ | \end{eqnarray*}</ | ||
+ | & a+b & c+d\\ | ||
+ | & x+y & u+v | ||
+ | \end{eqnarray*} | ||
+ | |||
+ | ==== Sonderzeichen und Griechische Buchstaben ==== | ||
+ | $ \mathrm{A}\mathrm{B}\Gamma\Delta\mathrm{E}\mathrm{Z}\mathrm{H}\Theta\mathrm{I}\mathrm{K}\Lambda | ||
+ | \mathrm{M}\mathrm{N}\Xi\mathrm{O}\Pi\mathrm{P}\Sigma\mathrm{T}\Phi\mathrm{X}\mathrm{Y}\Psi\Omega$ | ||
+ | |||
+ | ABΓΔEZHΘIKΛMNΞOΠPΣTΦXYΨΩ | ||
+ | |||
+ | αβγδϵζηθικλμνξoπρστϕχυψω | ||
+ | αβγδϵζηθικλμνξoπρστϕχυψω | ||
+ | εϑϖϱςφ | ||
+ | εϑϖϱςφ | ||
+ | ℵℜℑ∂∞∀∃¬∈♡ | ||
+ | ℵℜℑ∂∞∀∃¬∈♡ | ||
+ | ∀ε>0:|f(x1)−f(x2)|<ε∃η:|x1−x2|<η | ||
+ | ∀ε>0:|f(x1)−f(x2)|<ε∃η:|x1−x2|<η | ||
+ | |||
+ | Eurozeichen mit Unicode: € | ||
+ | Eurozeichen mit Unicode: € | ||
+ | ==== Klammern ==== | ||
+ | ( [ { [ ⌊ ⟨ { ⌈ | ||
+ | ( [ { [ ⌊ ⟨ { ⌈ | ||
+ | ) ] } ] ⌋ ⟩ } ⌉ | ||
+ | ) ] } ] ⌋ ⟩ } ⌉ | ||
+ | ((x+1)(x−1))2 | ||
+ | ((x+1)(x−1))2 | ||
+ | ((x+1)(x−1))2 | ||
+ | ((x+1)(x−1))2 | ||
+ | 1+(11−x2) | ||
+ | 1+(11−x2) | ||
+ | 26⏞a+b+⋯+z+26⏞A+B+⋯+Z⏟52 | ||
+ | 26⏞a+b+⋯+z+26⏞A+B+⋯+Z⏟52 | ||
+ | ¯m+nm+n_ | ||
+ | ¯m+nm+n_ | ||
+ | ==== Operatoren ==== | ||
+ | x=y>zx:=yx≤y≠z | ||
+ | x=y>zx:=yx≤y≠z | ||
+ | x∼y≃zx≡y≢zx⊂y⊆z | ||
+ | x∼y≃zx≡y≢zx⊂y⊆z | ||
+ | x+y−zx∗y/zx×y⋅z | ||
+ | x+y−zx∗y/zx×y⋅z | ||
+ | x∘y∙zx∪y∩zx⊔y⊓z | ||
+ | x∘y∙zx∪y∩zx⊔y⊓z | ||
+ | x∨y∧zx±y∓z | ||
+ | x∨y∧zx±y∓z | ||
+ | |||
+ | ==== Akzente ==== | ||
+ | ˆaˇb˜cˊdˊe | ||
+ | ˆaˇb˜cˊdˊe | ||
+ | ˙f¨g˘hˉk→l | ||
+ | ˙f¨g˘hˉk→l | ||
+ | ˆıˇȷ | ||
+ | ˆıˇȷ | ||
+ | ˆx^xy^xyz | ||
+ | ˆx^xy^xyz | ||
+ | ˜x~xy~xyz | ||
+ | ˜x~xy~xyz | ||
+ | ==== Vektoren ==== | ||
+ | α⋅(→x+→y)=α⋅→x+α⋅→y | ||
+ | α⋅(→x+→y)=α⋅→x+α⋅→y | ||
+ | →x⋅(→y⋅→z)≠(→x⋅→y)⋅→z | ||
+ | →x⋅(→y⋅→z)≠(→x⋅→y)⋅→z | ||
+ | →x×(→y×→z)≠(→x×→y)×→z | ||
+ | →x×(→y×→z)≠(→x×→y)×→z | ||
+ | ==== Pfeile ==== | ||
+ | $ \leftarrow \qquad \Leftarrow \qquad \leftrightarrow \qquad | ||
+ | \Leftrightarrow \qquad \uparrow\qquad\downarrow\qquad\nearrow$ | ||
+ | ←⇐↔⇔↑↓↗ | ||
+ | ⟵↼↦⇝ | ||
+ | \longleftarrow\qquad\leftharpoonup \qquad \mapsto \qquad \leadsto | ||
+ | $ (\mathcal{A} \Rightarrow \mathcal{B}) \Longleftrightarrow | ||
+ | (\lnot \mathcal{B} \Rightarrow \lnot \mathcal{A})$ | ||
+ | (\mathcal{A} \Rightarrow \mathcal{B}) \Longleftrightarrow (\lnot \mathcal{B} \Rightarrow \lnot \mathcal{A}) | ||
+ | $(\mathcal{A} \Longleftrightarrow \mathcal{B}) \Longleftrightarrow | ||
+ | (\mathcal{A}\Rightarrow \mathcal{B}) \wedge (\mathcal{B}\Rightarrow\mathcal{A})$ | ||
+ | |||
+ | $ (\mathcal{A} \Longleftrightarrow \mathcal{B}) \Longleftrightarrow | ||
+ | (\mathcal{A}\Rightarrow \mathcal{B}) \wedge (\mathcal{B}\Rightarrow\mathcal{A})$ | ||
+ | |||
+ | ==== Schriftartwechsel ==== | ||
+ | \forall x\in\mathbf{R}: x^2\ge0 | ||
+ | \forall x\in\mathbf{R}: x^2\ge0 | ||
+ | < | ||
+ | \mathbf{A} \cdot \mathbf{x} & = & | ||
+ | \mathbf{y} \\ | ||
+ | \textrm{mit } \mathbf{A}& | ||
+ | && | ||
+ | \mathbf{x} & = & (x_1, | ||
+ | \textrm{ und}\\ | ||
+ | \mathbf{y} & = & (y_1, \cdots, y_m)\\ | ||
+ | \end{eqnarray*}</ | ||
+ | \begin{eqnarray*} | ||
+ | \mathbf{A} \cdot \mathbf{x} & = & | ||
+ | \mathbf{y} \\ | ||
+ | \textrm{mit } \mathbf{A}& | ||
+ | && | ||
+ | \mathbf{x} & = & (x_1, | ||
+ | \textrm{ und}\\ | ||
+ | \mathbf{y} & = & (y_1, \cdots, y_m)\\ | ||
+ | \end{eqnarray*} | ||
+ | ==== Indizes und Hochstellung ==== | ||
+ | \displaystyle a_i \qquad a_{\displaystyle i_j} | ||
+ | \displaystyle a_i \qquad a_{\displaystyle i_j} | ||
+ | \displaystyle a^{\displaystyle i} \qquad a^{\displaystyle i^j} | ||
+ | \displaystyle a^{\displaystyle i} \qquad a^{\displaystyle i^j} | ||
+ | _1x_2 \qquad x^3_4 \qquad a^{b^\alpha_\beta}_{c^\gamma_\delta} \qquad F^1_2 \qquad F{}^1_2 | ||
+ | _1x_2 \qquad x^3_4 \qquad a^{b^\alpha_\beta}_{c^\gamma_\delta} \qquad F^1_2 \qquad F{}^1_2 | ||
+ | Vergleiche \displaystyle _1x_2 = \sqrt{\left(\frac{p}{2}\right)^2-q} | ||
+ | mit _1x_2 = -\frac{p}{2}\pm \sqrt{\left(\frac{p}{2}\right)^2-q} ! | ||
+ | Vergleiche \displaystyle _1x_2 = \sqrt{\left(\frac{p}{2}\right)^2-q} | ||
+ | mit _1x_2 = -\frac{p}{2}\pm \sqrt{\left(\frac{p}{2}\right)^2-q} ! | ||
+ | |||
+ | ==== Brüche ==== | ||
+ | \displaystyle \frac{1}{2} \qquad \frac{n+1}{3} | ||
+ | \displaystyle \frac{1}{2} \qquad \frac{n+1}{3} | ||
+ | \displaystyle \frac{x+y^2}{m+1} \qquad \frac{x+y^2}{m} + 1 \qquad x + \frac{y^2}{m}+1 | ||
+ | \displaystyle \frac{x+y^2}{m+1} \qquad \frac{x+y^2}{m} + 1 \qquad x + \frac{y^2}{m}+1 | ||
+ | x + \frac{\displaystyle y^2}{\displaystyle m+1} \qquad x + y^\frac{\displaystyle 2}{\displaystyle m+1} | ||
+ | x + \frac{\displaystyle y^2}{\displaystyle m+1} \qquad x + y^\frac{\displaystyle 2}{\displaystyle m+1} | ||
+ | \displaystyle x + \frac{y^2}{m+1} \qquad x + y^\frac{2}{m+1} | ||
+ | \displaystyle x + \frac{y^2}{m+1} \qquad x + y^\frac{2}{m+1} | ||
+ | \displaystyle \frac{\frac{x}{y}}{2} \qquad \frac{x}{\frac{y}{2}} | ||
+ | \displaystyle \frac{\frac{x}{y}}{2} \qquad \frac{x}{\frac{y}{2}} | ||
+ | |||
+ | $x_0 + \frac{1}{x_1 + | ||
+ | \frac{1}{x_2 + | ||
+ | \frac{1}{x_3 + | ||
+ | \frac{1}{x_4}}}}$ | ||
+ | $x_0 + \frac{1}{x_1 + | ||
+ | \frac{1}{x_2 + | ||
+ | \frac{1}{x_3 + | ||
+ | \frac{1}{x_4}}}}$ | ||
+ | |||
+ | $ \displaystyle x_0 + \frac{1}{\displaystyle x_1 + | ||
+ | \frac{\strut 1}{\displaystyle x_2 + | ||
+ | \frac{\strut 1}{\displaystyle x_3 + | ||
+ | \frac{\strut 1}{\displaystyle x_4}}}}$ | ||
+ | |||
+ | $ \displaystyle x_0+\frac{1}{\displaystyle x_1 + | ||
+ | \frac{\strut 1}{\displaystyle x_2 + | ||
+ | \frac{\strut 1}{\displaystyle x_3 + | ||
+ | \frac{\strut 1}{\displaystyle x_4}}}}$ | ||
+ | ==== Wurzeln ==== | ||
+ | \sqrt 2 \qquad \sqrt{\displaystyle x^2-y^2} \qquad \sqrt{\alpha^2 + \beta^2 - \gamma^2} | ||
+ | \sqrt 2 \qquad \sqrt{\displaystyle x^2-y^2} \qquad \sqrt{\alpha^2 + \beta^2 - \gamma^2} | ||
+ | \sqrt[3]{2} \qquad \sqrt[n]{\sqrt\alpha + \sqrt\beta} \qquad \sqrt[n+1]{a^n + b^n} | ||
+ | \sqrt[3]{2} \qquad \sqrt[n]{\sqrt\alpha + \sqrt\beta} \qquad \sqrt[n+1]{a^n + b^n} | ||
+ | \sqrt a +\sqrt{b^2} +\sqrt c \qquad \sqrt{\mathstrut a} + \sqrt{\mathstrut b^2} + \sqrt{\mathstrut c} | ||
+ | \sqrt a +\sqrt{b^2} +\sqrt c \qquad \sqrt{\mathstrut a} + \sqrt{\mathstrut b^2} + \sqrt{\mathstrut c} | ||
+ | \sqrt{1+ \sqrt{1+ \sqrt{1+ \sqrt{1+ \sqrt{1 + \sqrt{1+x}}}}}} | ||
+ | \sqrt{1+ \sqrt{1+ \sqrt{1+ \sqrt{1+ \sqrt{1 + \sqrt{1+x}}}}}} | ||
+ | ==== Binominalkoeffizienten ==== | ||
+ | {n \choose 2} \qquad {n+1 \choose k} \qquad \frac{\displaystyle{n \choose k}}{\displaystyle 2} | ||
+ | {n \choose 2} \qquad {n+1 \choose k} \qquad \frac{\displaystyle{n \choose k}}{\displaystyle 2} | ||
+ | {x \atop a+b} \qquad {n \atop k+1} | ||
+ | {x \atop a+b} \qquad {n \atop k+1} | ||
+ | \displaystyle \sum_{{\scriptstyle 1 \le i \le p \atop \scriptstyle 1 \le j \le q}} a_{ij} b_{ji} | ||
+ | \displaystyle \sum_{{\scriptstyle 1 \le i \le p \atop \scriptstyle 1 \le j \le q}} a_{ij} b_{ji} | ||
+ | ==== Limes, Ableitungen ==== | ||
+ | \displaystyle f\prime(x) = \lim_{\Delta x \to 0} \frac{f(x+\Delta x)-f(x)}{\Delta x} | ||
+ | \displaystyle f\prime(x) = \lim_{\Delta x \to 0} \frac{f(x+\Delta x)-f(x)}{\Delta x} | ||
+ | |||
+ | < | ||
+ | f(x) & = & \cos x \\ | ||
+ | f’(x) & = & -\sin x \\ | ||
+ | f’’(x) & = & -\cos x \\ | ||
+ | \end{eqnarray*}</ | ||
+ | \begin{eqnarray*} | ||
+ | f(x) & = & \cos x \\ | ||
+ | f’(x) & = & -\sin x \\ | ||
+ | f’’(x) & = & -\cos x \\ | ||
+ | \end{eqnarray*} | ||
+ | |||
+ | < | ||
+ | h(x) & = & f(x) \cdot g(x)\\ | ||
+ | \frac{h(x)}{\mathrm{d}x} & = & f(x)\cdot\frac{g(x)}{\mathrm{d}x}+\frac{f(x)}{\mathrm{d}x} \cdot g(x) | ||
+ | \end{eqnarray*}</ | ||
+ | \begin{eqnarray*} | ||
+ | h(x) & = & f(x) \cdot g(x)\\ | ||
+ | \frac{h(x)}{\mathrm{d}x} & = & f(x)\cdot\frac{g(x)}{\mathrm{d}x}+\frac{f(x)}{\mathrm{d}x} \cdot g(x) | ||
+ | \end{eqnarray*} | ||
+ | |||
+ | < | ||
+ | \mathbf{x} & = & \frac{1}{2} \mathbf{k} \cdot t^2 + \mathbf{v_0} \cdot t + \mathbf{x_0}\\ | ||
+ | \dot \mathbf{x} & = & \mathbf{k} \cdot t + \mathbf{v_0}\\ | ||
+ | \ddot \mathbf{x} & = & \mathbf{k} | ||
+ | \end{eqnarray*}</ | ||
+ | |||
+ | < | ||
+ | \mathbf{x} & = & \frac{1}{2} \mathbf{k} \cdot t^2 + \mathbf{v_0} \cdot t + x_0\\ | ||
+ | \dot{\mathbf{x}} & = & \mathbf{k} \cdot t + \mathbf{v_0}\\ | ||
+ | \ddot{\mathbf{x}} & = & \mathbf{k} | ||
+ | \end{eqnarray*}</ | ||
+ | \begin{eqnarray*} | ||
+ | \mathbf{x} & = & \frac{1}{2} \mathbf{k} \cdot t^2 + \mathbf{v_0} \cdot t + x_0\\ | ||
+ | \dot{\mathbf{x}} & = & \mathbf{k} \cdot t + \mathbf{v_0}\\ | ||
+ | \ddot{\mathbf{x}} & = & \mathbf{k} | ||
+ | \end{eqnarray*} | ||
+ | |||
+ | < | ||
+ | z (x, y) & = & xy\\ | ||
+ | \frac{\partial z}{\partial x} & = & y \quad \textrm{und}\\ | ||
+ | \frac{\partial z}{\partial y} & = & x | ||
+ | \end{eqnarray*}</ | ||
+ | \begin{eqnarray*} | ||
+ | z (x, y) & = & xy\\ | ||
+ | \frac{\partial z}{\partial x} & = & y \quad \textrm{und}\\ | ||
+ | \frac{\partial z}{\partial y} & = & x | ||
+ | \end{eqnarray*} | ||
+ | |||
+ | < | ||
+ | z (x, y) & = & \frac{xy}{x^2+y^2} \quad(\forall x, | ||
+ | \frac{\partial z}{\partial x} & = & \frac{y(y^2-x^2)}{(x^2+y^2)^2} \qquad \textrm{und}\\ | ||
+ | \frac{\partial z}{\partial y} & = & \frac{x(x^2-y^2)}{(x^2+y^2)^2} | ||
+ | \end{eqnarray*}</ | ||
+ | \begin{eqnarray*} | ||
+ | z (x, y) & = & \frac{xy}{x^2+y^2} \quad(\forall x, | ||
+ | \frac{\partial z}{\partial x} & = & \frac{y(y^2-x^2)}{(x^2+y^2)^2} \qquad \textrm{und}\\ | ||
+ | \frac{\partial z}{\partial y} & = & \frac{x(x^2-y^2)}{(x^2+y^2)^2} | ||
+ | \end{eqnarray*} | ||
+ | ==== Summen ==== | ||
+ | |||
+ | \sum\limits_{i=2}^{\infty} \frac{\displaystyle(-1)^i}{\displaystyle i^2}= | ||
+ | \displaystyle{\frac{1}{4}-\frac{1}{9}+\frac{1}{16}-\frac{1}{25}+}~\cdots$ | ||
+ | |||
+ | \sum\limits_{i=2}^{\infty} \frac{\displaystyle(-1)^i}{\displaystyle i^2}=\displaystyle{\frac{1}{4}-\frac{1}{9}+\frac{1}{16}-\frac{1}{25}+}~\cdots | ||
+ | |||
+ | < | ||
+ | \sum\limits_{i=1}^p \sum\limits_{j=1}^q\sum\limits_{k=1}^r a_{ij}b_{jk}c_{ki} | ||
+ | < | ||
+ | \sum\limits_{{\scriptstyle 1 \le i \le p \atop \scriptstyle 1 \le j \le q} \atop \scriptstyle 1 \le k \le r} | ||
+ | a_{ij} b_{jk} c_{ki}$ | ||
+ | </ | ||
+ | \sum\limits_{{\scriptstyle 1 \le i \le p \atop \scriptstyle 1 \le j \le q} \atop \scriptstyle 1 \le k \le r} a_{ij} b_{jk} c_{ki} | ||
+ | |||
+ | |||
+ | ==== Reihen ==== | ||
+ | < | ||
+ | \begin{eqnarray*} | ||
+ | \sum_{i=0}^{\infty}(-1)^i \frac{1}{2i+1} & = & 1 - \frac{1}{3}+\frac{1}{5}-\cdots\\ | ||
+ | & = & \frac{\pi}{4} | ||
+ | \end{eqnarray*}</ | ||
+ | |||
+ | \begin{eqnarray*} | ||
+ | \sum_{i=0}^{\infty}(-1)^i \frac{1}{2i+1} & = & 1 - \frac{1}{3}+\frac{1}{5}-\cdots\\ | ||
+ | & = & \frac{\pi}{4} | ||
+ | \end{eqnarray*} | ||
+ | |||
+ | < | ||
+ | \begin{eqnarray*} | ||
+ | \sum_{i=1}^{\infty}(-1)^{i+1} \frac{1}{i^2} & = & 1-\frac{1}{2^2} + \frac{1}{3^2} - \cdots\\ | ||
+ | & = & \frac{\pi^2}{12} | ||
+ | \end{eqnarray*} | ||
+ | </ | ||
+ | \begin{eqnarray*} | ||
+ | \sum_{i=1}^{\infty}(-1)^{i+1} \frac{1}{i^2} & = & 1-\frac{1}{2^2} + \frac{1}{3^2} - \cdots\\ | ||
+ | & = & \frac{\pi^2}{12} | ||
+ | \end{eqnarray*} | ||
+ | |||
+ | < | ||
+ | \begin{eqnarray*} | ||
+ | \forall x \in \mathbf{R}: | ||
+ | 1 - x + \frac{x^2}{2!} - | ||
+ | \frac{x^3}{3!} + \cdots\\ | ||
+ | & = & \sum_{i=0}^{\infty} | ||
+ | (-1)^i\frac{x^i}{i!} | ||
+ | \end{eqnarray*}</ | ||
+ | |||
+ | \begin{eqnarray*} | ||
+ | \forall x \in \mathbf{R}: | ||
+ | 1 - x + \frac{x^2}{2!} - | ||
+ | \frac{x^3}{3!} + \cdots\\ | ||
+ | & = & \sum_{i=0}^{\infty} | ||
+ | (-1)^i\frac{x^i}{i!} | ||
+ | \end{eqnarray*} | ||
+ | |||
+ | < | ||
+ | \begin{eqnarray*} | ||
+ | \forall x \in \mathbf{R}: | ||
+ | 1 + x + \frac{x^2}{2!} + | ||
+ | \frac{x^3}{3!} + \cdots\\ | ||
+ | & | ||
+ | \end{eqnarray*}</ | ||
+ | \begin{eqnarray*} | ||
+ | \forall x \in \mathbf{R}: | ||
+ | 1 + x + \frac{x^2}{2!} + | ||
+ | \frac{x^3}{3!} + \cdots\\ | ||
+ | & | ||
+ | \end{eqnarray*} | ||
+ | |||
+ | < | ||
+ | </ | ||
+ | \displaystyle \lim_{n \to \infty} \sum_{k=1}^n \frac{1}{k^2} = \frac{\pi^2}{6} | ||
+ | |||
+ | ==== Integrale ==== | ||
+ | < | ||
+ | \int\limits_0^{\frac{\pi}{3}}\cos x~\mathrm{d}x \qquad | ||
+ | $ \int\int_D\limits f(x, y) \mathrm{d}x \mathrm{d}y \qquad | ||
+ | \int\!\!\!\int_D\limits f(x, y)\, | ||
+ | </ | ||
+ | \int\limits_{-\infty}^{\infty}\displaystyle{\frac{1}{1 + x^2}} \mathrm{d}x \qquad | ||
+ | \int\limits_0^{\frac{\pi}{3}}\cos x~\mathrm{d}x \qquad | ||
+ | $ \int\int_D\limits f(x, y) \mathrm{d}x \mathrm{d}y \qquad | ||
+ | \int\!\!\!\int_D\limits f(x, y)\, | ||
+ | |||
+ | \prod_{i=1}^n i = n! \qquad \prod\limits_{i=1}^n i = n! \qquad \prod\nolimits_{i=1}^n i = n! | ||
+ | \prod_{i=1}^n i = n! \qquad \prod\limits_{i=1}^n i = n! \qquad \prod\nolimits_{i=1}^n i = n! | ||
+ | |||
+ | \displaystyle{{n \choose k}} = \frac{\displaystyle\prod_{i=1}^n i} {\displaystyle\prod_{i=1}^k i\cdot \prod_{i=1}^{n-k} i} | ||
+ | \displaystyle{{n \choose k}} = \frac{\displaystyle\prod_{i=1}^n i} {\displaystyle\prod_{i=1}^k i\cdot \prod_{i=1}^{n-k} i} | ||
+ | ==== Funktionen ==== | ||
+ | \displaystyle \lim_{x \to 0} \frac{\sin x}{x}=1 | ||
+ | \displaystyle \lim_{x \to 0} \frac{\sin x}{x}=1 | ||
+ | \displaystyle \int \frac{\mathrm{d}x} {\sin a x \cos a x} = \frac{1}{a} \ln \tan a x | ||
+ | \displaystyle \int \frac{\mathrm{d}x} {\sin a x \cos a x} = \frac{1}{a} \ln \tan a x | ||
+ | \arcsin x = \left[ \arccos \sqrt{1 - x^2}\right] | ||
+ | \arcsin x = \left[ \arccos \sqrt{1 - x^2}\right] | ||
+ | ==== Matrizen ==== | ||
+ | < | ||
+ | a_{11} & a_{12} & \cdots & a_{1n} \\\\ | ||
+ | a_{21} & a_{22} & \cdots & a_{21} \\\\ | ||
+ | \vdots & \vdots & \ddots & \vdots \\\\ | ||
+ | a_{m1} & a_{m2} & \cdots & a_{mn} | ||
+ | \end{array}$</ | ||
+ | $ \begin{array}{|cccc|} | ||
+ | a_{11} & a_{12} & \cdots & a_{1n} \\\\ | ||
+ | a_{21} & a_{22} & \cdots & a_{21} \\\\ | ||
+ | \vdots & \vdots & \ddots & \vdots \\\\ | ||
+ | a_{m1} & a_{m2} & \cdots & a_{mn} | ||
+ | \end{array}$ | ||
+ | |||
+ | < | ||
+ | \Gamma_{11} & \Gamma_{12} & \cdots & \Gamma_{1n}\\\\ | ||
+ | \Gamma_{21} & \Gamma_{22} & \cdots & \Gamma_{2n}\\\\ | ||
+ | \vdots & \vdots & \ddots & \vdots\\\\ | ||
+ | \Gamma_{m1} & \Gamma_{m2} & \cdots & \Gamma_{mn} | ||
+ | \end{array}\right\}$ | ||
+ | </ | ||
+ | |||
+ | $ \left\{\begin{array}{cccc} | ||
+ | \Gamma_{11} & \Gamma_{12} & \cdots & \Gamma_{1n}\\\\ | ||
+ | \Gamma_{21} & \Gamma_{22} & \cdots & \Gamma_{2n}\\\\ | ||
+ | \vdots & \vdots & \ddots & \vdots\\\\ | ||
+ | \Gamma_{m1} & \Gamma_{m2} & \cdots & \Gamma_{mn} | ||
+ | \end{array}\right\}$ | ||
+ | |||
+ | < | ||
+ | x & \textrm{fuer } x \ge 0\\\\ | ||
+ | -x & \textrm{fuer } x < 0\\\\ | ||
+ | \end{array}\right\}$ | ||
+ | </ | ||
+ | |||
+ | $ |x|= \left\{ \begin{array}{ll} | ||
+ | x & \textrm{fuer } x \ge 0\\\\ | ||
+ | -x & \textrm{fuer } x < 0\\\\ | ||
+ | \end{array}\right\}$ | ||
+ | |||
+ | < | ||
+ | \begin{array}{c@{}c@{}c} | ||
+ | \begin{array}{|cc|} | ||
+ | \hline | ||
+ | a_{11} & a_{12} \\\\ | ||
+ | a_{21} & a_{22} \\\\ | ||
+ | \hline | ||
+ | \end{array} & 0 & 0 \\\\ | ||
+ | 0 & \begin{array}{|ccc|} | ||
+ | \hline | ||
+ | b_{11} & b_{12} & b_{13}\\\\ | ||
+ | b_{21} & b_{22} & b_{23}\\\\ | ||
+ | b_{31} & b_{32} & b_{33}\\\\ | ||
+ | \hline | ||
+ | \end{array} & 0 \\\\ | ||
+ | 0 & 0 & \begin{array}{|cc|} | ||
+ | \hline | ||
+ | c_{11} & c_{12} \\\\ | ||
+ | c_{21} & c_{22} \\\\ | ||
+ | \hline | ||
+ | \end{array} \\\\ | ||
+ | \end{array} | ||
+ | \right)$ | ||
+ | </ | ||
+ | |||
+ | $ \left( | ||
+ | \begin{array}{c@{}c@{}c} | ||
+ | \begin{array}{|cc|} | ||
+ | \hline | ||
+ | a_{11} & a_{12} \\\\ | ||
+ | a_{21} & a_{22} \\\\ | ||
+ | \hline | ||
+ | \end{array} & 0 & 0 \\\\ | ||
+ | 0 & \begin{array}{|ccc|} | ||
+ | \hline | ||
+ | b_{11} & b_{12} & b_{13}\\\\ | ||
+ | b_{21} & b_{22} & b_{23}\\\\ | ||
+ | b_{31} & b_{32} & b_{33}\\\\ | ||
+ | \hline | ||
+ | \end{array} & 0 \\\\ | ||
+ | 0 & 0 & \begin{array}{|cc|} | ||
+ | \hline | ||
+ | c_{11} & c_{12} \\\\ | ||
+ | c_{21} & c_{22} \\\\ | ||
+ | \hline | ||
+ | \end{array} \\\\ | ||
+ | \end{array} | ||
+ | \right)$ | ||
+ | < | ||
+ | </ |